Condition based maintenance (CBM) is becoming more and more popular in equipment main-tenance. A prerequisite to widespread deployment of CBM technology and practice in industry is effective diagnostics and prognostics. A dynamic Bayesian network (DBN) based prognosis method was investigated to predict the remaining useful life (RUL) for an equipment. First, a DBN based prognosis framework and specific steps for building a DBN based prognosis model were presented. Then, the corresponding inference algorithms for DBN based prognosis were provided. Finally, a prognosis procedure based on particle filtering algorithms was used to predict the RUL of drill-bits of a vertical drilling machine, which is commonly used in industrial process. Preliminary experimental results are promising.