The reaction-transport model is widely used to identify and quantify dissolved chemical species in sediment porewaters. In this paper, a modularized code framework of diagenetic model was proposed as a diagnostic tool to fit the porewater profiles in marine sediments. Based on the conservation principle of the finite volume method, we combined the discretized diagenetic equations with various geochemical reactions, including but not limited to methanogenesis, sulfate reduction, etc.. The code was organized in object-oriented FORTRAN and verified with literature parameters, which proved its robustness and effectiveness. Finally, three different sites(IODP Expedition 311 Site U1327, UBGH2-1_1, ODP Leg204 Site 1245) are exemplified as case studies.
At modern cold seeps,the anaerobic oxidation of methane(AOM)is the dominant pathway for methane consumption in marine sediments.AOM,which is mediated by a consortium of methane oxidizing archaea and sulfate reducing bacteria,is proposed to be responsible for authigenic carbonate formation.A methane-derived carbonate chimney was collected from the Shenhu area, northern South China Sea.The membrane lipids and their very low carbon isotopic compositions(?115‰to?104‰)in the Shenhu chimney suggest the presence of an AOM process.Three specific archaeal and bacterial biomarkers were detected,including Ar,DAGE 1f,and monocyclic MDGD.Their strongly depleted??13C values(?115‰to?104‰),which are lower than those of the normal marine lipids in sediments,reveal biogenic methane as their origin.The carbonate deposits exhibiting a chimney structure indicate that a vigorous methane-rich fluid expulsion may have occurred at the seafloor.We propose that the decomposition of gas hydrates at depth is the likely cause of seepage and cold seep carbonate formation in the Shenhu area.
GE LuJIANG ShaoYongYANG TaoYANG JingHongWU NengYouZHANG GuangXueLIU Jian
The Qiongdongnan Basin is one of the target areas for marine gas hydrate exploration in the northern margin of the South China Sea. In this study, major anion (e.g., SO42 , Cl, Br, I), cation (e.g., Ca, Mg, K, Na), and trace element (e.g., Sr, Ba) con- centrations of pore water samples collected from site HQ-1PC in the Qiongdongnan Basin were analyzed. These geochemical data suggest that the process of AOM (Anaerobic Oxidation of Methane) is dominant in sulfate-reduction zone in this site due to high upwelling iodine flux and strong microbial activities. The iodine-rich fluids, which may carry methane for the gas hydrate formation, pass through the gas hydrate stability zone, mix with brine released during gas hydrate formation, and cause the geochemical anomalies observed at site HQ-1PC. The pore water geochemical characteristics and anomalies in the Qiongdongnan Basin are quite similar to those found in other gas hydrate locations in the Shenhu area in the northern South China Sea, and a genetic link is suggested with the possibility of gas hydrate occurrence in the study area.
YANG TaoJIANG ShaoYongGE LuYANG JingHongWU NengYouZHANG GuangXueLIU JianCHEN DaoHua