为有效解决目前机械传动系统中选用电机时功率裕度过大而普遍存在的能源利用效率较低问题,提出一种基于三相异步电机鼠笼转子的异步磁力耦合器(squirrel cage asynchronous magnetic coupler,SCAMC)。结合SCAMC具体结构特点,采用标量磁位法及二维场边界条件,建立气隙磁场数理模型;在气隙磁通密度中引入时间变量,推导出感生电流随时间变化的表达式;基于电流叠加性,将笼条电流折算到转子表面,并沿圆周方向对感生电流所形成的洛伦兹力进行积分,建立了SCAMC的电磁转矩模型。基于上述理论及技术基础,设计并制造出一台37 k W SCAMC样机,并对其机械特性进行理论计算、仿真验证及试验测试。结果表明:转差率相同时,所得的仿真及试验数据与理论计算值相比,误差不超过5%;SCAMC与同容量的三相异步电机相比,线性工作区更宽,过载能力更强,但其机械特性偏软,可有效缓解负载对电机的冲击。该研究可为磁力耦合器在大惯量、难启动及经常性过载机械设备中的应用提供参考。
为了提高磁场调制式永磁齿轮(Field Modulated Permanent Magnetic Gears,FMPMG)的气隙磁密及传动转矩,基于某一具体结构的FMPMG,应用Ansoft14对其Halbach及平行充磁方式进行了分析比较,研究了永磁体厚度、转角差、轭铁厚度对气隙磁密及传动转矩的影响,结果表明:Halbach所形成的气隙磁密较平行充磁更具有正弦性;与平行充磁相比,Halbach气隙磁密的厚度极值点明显高于平行充磁;另外,Halbach特有的单边效应,使其对轭铁厚度的要求不高,可减小或取消轭铁结构以降低FMPMG的转动惯量,为大功率高性能的FMPMG实用化奠定基础。
为获得笼型转子异步磁力耦合器(Asynchronous Magnetic Coupling, AMC)工作时的内部温升,基于AMC运行机理建立数理模型,通过变分原理计算出AMC温度场的理论值,并利用Ansoft及ANSYS Workbench联合仿真计算出AMC温度场的有限元值,并最终通过实验测出AMC的实际温度。结果表明:AMC理论计算及有限元分析结果与实测值相当,证明了所建AMC理论模型的正确性。
基于磁场能量法,给出磁场调制式永磁齿轮(Field Modulated Permanent Magnetic Gear,FMPMG)的齿槽转矩数理模型,进而得出与齿槽转矩相关的结构参数;提出了不同结构参数的优化修型方法,并借助有限元仿真(FEM)验证其有效性;通过仿真结果比对获得FMPMG的最优修型方法,有效减小齿槽转矩,并使FMPMG的动力学特性最优.