Amphiphilic polypyridyl mthenium(Ⅱ) complex cis-di(isothiocyanato)(4,4'-di-tert-butyl-2,2'-bipyridyl)(4,4'- dicarboxy-2,2'-bipyridyl)ruthenium(Ⅱ)(K005) has been synthesized and characterized by cyclic voltammetry, ^1H NMR, UV-Vis, and FT-IR spectroscopies. The sensitizer sensitizes TiO2 over a notably broad spectral range due to its intense metal-to-ligand charge-transfer (MLCT) bands at 537 and 418 nm. The photophysical and photochemical studies of K005 were contrasted with those of cis-Ru(dcbpy)2(NCS)2, known as the N3 dye, and the amphiphilic ruthenium(Ⅱ) dye Z907. A reversible couple at E1/2=0.725 V vs. saturated calomel electrode (SCE) with a separation of 0.08 V between the anodic and cathodic peaks, was observed due to the Ru^Ⅱ/Ⅲ couple by cyclic voltammetry. Furthermore, this amphiphilic ruthenium complex was successfully used as sensitizers for dye-sensitized solar cells with the efficiency of 3.72% at the 100 mW·cm^-2 irradiance of air mass 1.5 simulated sunlight without optimization of TiO2 films and the electrolyte.
The TiO2 nanoporous film photoelectrode, as a crucial component of dye-sensitized solar cells, has been investigated. The photovoltaic properties and the dark current were studied by two surface modification methods. One was to apply a compact layer between the conductive glass substrate and nanoporous TiO2 film. Another was to produce TiO2 nanoparticles among the microstructure by TICl4 treatment. A suitable concentration and number of times for TICl4 treatment were found in our experiment. The dark current is suppressed by surface modifications, leading to a significant improvement in the solar cells performance. An excessive concentration of TICl4 will produce more surface states and introduce a larger dark current reversely. The dye is also regarded as a source of charge recombination in dark to some extent, due to an amount of surface protonations introduced by the interracial link in the conductive glass substrate/dye interface and dye/TiO2 interface.