The crystallographic and the magnetic structures of the composite compound Nd2Co7 at 300 K are investigated by a combined refinement of X-ray diffraction data and high-resolution neutron diffraction data. The compound crystallizes into a hexagonal Ce2NiT-type structure and consists of alternately stacking MgZn2-type NdCo2 and CaCus-type NdCo5 structural blocks along the c axis. A magnetic structure model with the moments of all atoms aligning along the c axis provides a satisfactory fitting to the neutron diffraction data and coincides with the easy magnetization direction revealed by the X-ray diffraction experiments on magnetically pre-aligned fine particles. The refinement results show that the derived atomic moments of the Co atoms vary in a range of 0.7 μB-1.1 μB and the atomic moment of Nd in the NdCo5 slab is close to the theoretical moment of a free trivalent Nd3+ ion, whereas the atomic moment of Nd in the NdCo2 slab is much smaller than the theoretical value for a free Nd3+ ion. The remarkable difference in the atomic moment of Nd atoms between different structural slabs at room temperature is explained in terms of the magnetic characteristics of the NdCo2 and NdCo5 compounds and the local chemical environments of the Nd atoms in different structural slabs of the Nd2Co7 compound.
This paper investigates the structural stability of intermetallics R3Ni13-xCoxB2 (R=Y, Nd and Sm) with Nd3Ni13B2-type structure and the site preferences of the transition element Co by using a series of interatomic pair potentials. The space group remains unchanged upon substitution of Co for Ni in R3Ni13-xCoxB2 and the calculated lattice constants are found to agree with reports in literatures. The calculated cohesive energy curves show that Co atoms substitute for Ni with a strong preference for the 3g sites and the order of site preference is 3g, 4h and 6i. Moreover, the total and partial phonon densities of states are first evaluated for the R3Ni13B2 compounds with the hexagonal Nd3Nil3B2-type structure.