In this work, the biocompatibility of a biomimetic, fully biodegradable ionomer phosphorylcholine (PC)-functionalized poly(butylene succinate) (PBS-PC) was investigated by means of hemolysis, platelet adhesion, protein adsorption and cytotox- icity experiments. The reference materials were poly(butylene succinate) (PBS) and chloroethylphosphoryl functionalized poly(butylene succinate) (PBS-Cl). The hemolysis rates (HR) of the leaching solutions of PBS, PBS-Cl and PBS-PC were all lower than the safe value, and the rate of PBS-PC was reduced to 1.07%. Scanning electron microscopy (SEM) measurements showed that platelet adhesion and aggregation were significant on both PBS and PBS-Cl surface. In contrast, very few platelets were observed on PBS-PC surface. Bicinchoninic acid (BCA) measurements revealed that the adsorption amounts of bovine serum albumin (BSA) and bovine plasma fibrinogen (BPF) on PBS-PC surface were 52% and 72% reduction respectively compared with those on PBS surface. Moreover, non-cytotoxicity of both PBS-PC particles and its leaching solution was sug- gested by MTT assay using mouse L929 fibroblast cells. All the results demonstrated that the biocompatibility of PBS could be greatly improved by PC end-capping strategy. This PC functionalized polyester may have potential applications in biological environments as a novel carrier for controlled drug release and scaffold for tissue engineering.
以丁二酸,富马酸和1,4-丁二醇为原料,通过溶液聚合的方法合成了一系列主链含有碳碳双键的不饱和脂肪族聚酯,聚(丁二酸丁二醇酯-共-富马酸丁二醇酯)P(BS-co-BF)s.以过量的Na HSO3为磺化试剂,合成了侧基为磺酸根基团的聚丁二酸丁二醇酯PBS共聚物P(BS-co-SBS)s.运用核磁共振氢谱(1HNMR),红外光谱(IR)和凝胶渗透色谱(GPC)表征了共聚物的化学结构及分子量.结合溶剂挥发和透析法研究了系列共聚物P(BS-co-SBS)s在水中的自组装行为.动态光散射(DLS)和透射电镜(TEM)的研究发现,系列共聚物P(BS-co-SBS)s均可自组装形成稳定的、具有核壳结构,表面带有负电荷的胶束(尺寸:103~165nm,PDI:0.187~0.264,zeta电位-35^-51 m V).载药和释药的结果显示,胶束对疏水药物阿霉素具有一定的缓释效果.