Brain-computer interface (BCI) is a communication system that can help lock-in patients to interact with the outside environment by translating brain signals into machine commands.The present work provides a design for a virtual reality (VR) based BCI system that allows human participants to control a virtual hand to make gestures by P300 signals,with a positive peak of potential about 300 ms posterior to the onset of target stimulus.In this virtual environment,the participants can obtain a more immersed experience with the BCI system,such as controlling a virtual hand or walking around in the virtual world.Methods of modeling the virtual hand and analyzing the P300 signals are also described in detail.Template matching and support vector machine were used as the P300 classifier and the experiment results showed that both algorithms perform well in the system.After a short time of practice,most participants could learn to control the virtual hand during the online experiment with greater than 70% accuracy.
This paper presents a hybrid brain-computer interface (BCI) control strategy,the goal of which is to expand control functions of a conventional motor imagery or a P300 potential based BCI in a virtual environment.The hybrid control strategy utilizes P300 potential to control virtual devices and motor imagery related sensorimotor rhythms to navigate in the virtual world.The two electroencephalography (EEG) patterns serve as source signals for different control functions in their corresponding system states,and state switch is achieved in a sequential manner.In the current system,imagination of left/right hand movement was translated into turning left/right in the virtual apartment continuously,while P300 potentials were mapped to discrete virtual device control commands using a five-oddball paradigm.The combination of motor imagery and P300 patterns in one BCI system for virtual environment control was tested and the results were compared with those of a single motor imagery or P300-based BCI.Subjects obtained similar performances in the hybrid and single control tasks,which indicates the hybrid control strategy works well in the virtual environment.