Deep fluids in a petroliferous basin generally come from the deep crust or mantle beneath the basin basement, and they transport deep substances(gases and aqueous solutions) as well as heat to sedimentary strata through deep faults. These deep fluids not only lead to large-scale accumulations of CO2, CH4, H2, He and other gases, but also significantly impact hydrocarbon generation and accumulation through organic-inorganic interactions. With the development of deep faults and magmatic-volcanic activities in different periods, most Chinese petroliferous basins have experienced strong impacts associated with deep fluid activity. In the Songliao, Bohai Bay, Northern Jiangsu, Sanshui, Yinggehai and Pearl Mouth Basins in China, a series of CO2 reservoirs have been discovered. The CO2 content is up to 99%, with δ-(13)C(CO2) values ranging from-4.1‰ to-0.37‰ and -3He/-4He ratios of up to 5.5 Ra. The abiogenic hydrocarbon gas reservoirs with commercial reserves, such as the Changde, Wanjinta, Zhaozhou, and Chaoyanggou reservoirs, are mainly distributed in the Xujiaweizi faulted depression of the Songliao Basin. The δ-(13)CCH4 values of the abiogenic alkane gases are generally -30‰ and exhibit an inverse carbon isotope sequence of δ-(13)C(CH4)δ-(13)C(C2H6)δ-(13)C(C3H8)δ-(13)C(C4H10). According to laboratory experiments, introducing external H2 can improve the rate of hydrocarbon generation by up to 147% through the kerogen hydrogenation process. During the migration from deep to shallow depth, CO2 can significantly alter reservoir rocks. In clastic reservoirs, feldspar is easily altered by CO2-rich fluids, leading to the formation of dawsonite, a typical mineral in high CO2 partial pressure environments, as well as the creation of secondary porosity. In carbonate reservoirs, CO2-rich fluids predominately cause dissolution or precipitation of carbonate minerals. The minerals, e.g., calcite and dolomite, show some typical features, such as higher homogenization tem
Hydrogen gas accelerates hydrocarbon generation, but little is known about its distribution and origin in petroliferous basins, which has hindered the further exploration.Taken the Jiyang Depression in eastern China as an example, this study collected natural gas from different tectonic units, and analyzed various geochemical characters including gas contents, and carbon and hydrogen isotopic composition.The result shows that:(1) hydrogen gas is widespread distributed, but its content is very low, which typically ranges from 0.01% to 0.1% in this region;(2) the ratios of H2/3He, indicative of the origins of hydrogen gas, suggest that mantle-derived hydrogen is dominant.Even in tectonically stable areas absent with deep fluid activities, there is also mantle-derived;(3) the isotopic composition of hydrogen falls in the range of –798‰ to –628‰(relative to VSMOW standard).In areas with deep-derived fluids, the hydrogen gas has a similar isotopic composition with the previously documented deep-sourced gas, with lighter isotopic composition.In contrast, hydrogen gas has a heavier isotopic composition in relatively stable areas.The isotopic signatures suggest that there is a mixture of mantle- and crust-derived hydrogen gas in the relatively stable area, which is consistent with the H2/3He ratios.Therefore, it is clear that the hydrogen gas has a much wider distribution than found in the deep-derived fluid area, resulting in a much broader area with hydrogenating effect for resource rock.This understanding will provide new insights for hydrocarbon generation research and resource assessment in petroliferous basins.