The heated test pieces were treated with alternating magnetic field by self-made experimental facility firstly. And influences of magnetic treatment on microstructure densification of Diamond Saw Segments were studied through hardness testing, ultrasonic testing, metallurgical structure and fracture pattern analysis by comparative method. The mechanism of magnetic treatment is analyzed and discussed in the end. The results show that the hardness of test pieces after magnetized are harder than before, that HRB hardness is improved by 3.58 on average. The sound path and amplitude of echo wave both decrease in test pieces after magnetized. The relative pad value of echo wave is regularly related with the microstructure densification, what is profound to further establish the regularity studying the degree of matrices densification using ultrasonic testing. The pores become few and pore shape gradually spheroidizing with the magnetic treatment, and matrices are more homogeneous and compact than the without by metallographic microscope. The degree of matrices densification is further improved after magnetized. The average crystal grain size is finer than the without, and the reason of grain refining is that densification of diamond saw blade improved. Magnetic treatment can act as one kind of effective technique to improve the microstructure densification of diamond saw segments.
The powerful alternate magnetic field treatment is an effective not-heat treatment, which improves the coriaceous performance of the material. In order to reveal the effect rule of the powerful alternate magnetic field on the structure capability after thermal plastic forming, the experimental methods were adopted to compare the microcosmic structure of the LY12 aluminium alloy test pieces before and after the powerful alternate magnetic field treatment. The mechanism of the structure refining was analyzed theoretically. According to the effect rule of the alternate magnetic field on critical grain growth work and the magnetic vibration-constriction mechanism, the structure dynamics factors were analyzed. The results show that, after a certain powerful alternate magnetic field treatment, the mechanical capability of the LY12 aluminium alloy after thermal plastic forming can be reinforced, the structure intertwist deriving from the thermal plastic forming becomes even and the branch crystal is also smashed, consequently refines the structure. The powerful alternate magnetic field treatment can be regarded as an effective method to improve metal structure performance after heat plastic forming.
Theoretical analysis is made on the temperature field at the time of pulse current discharge in a metal structure with an elliptical embedding crack. In finding the temperature field, analogy between the current flow through an elliptical embedding crack and the fluid flow through a barrier is made based on the similarity principle. Boundary conditions derived from this theory are introduced so that the distribution of current density and the temperature field expressions can be obtained. The study provides a theoretic basis to the applications of stopping spatial crack with electromagnetic heating.