Based on the optimal velocity car-following model, in this paper, we propose an improved model for simulating train movement in an urban railway in which the regenerative energy of a train is considered. Here a new additional term is introduced into a traditional car-following model. Our aim is to analyze and discuss the dynamic characteristics of the train movement when the regenerative energy is utilized by the electric locomotive. The simulation results indicate that the improved car-following model is suitable for simulating the train movement. Further, some qualitative relationships between regenerative energy and dynamic characteristics of a train are investigated, such as the measurement data of regenerative energy presents a power-law distribution. Our results are useful for optimizing the design and plan of urban railway systems.
Optimizing train movement has a great significance for railway traffic. In this paper, based on the optimal velocity car-following model, we propose a new simulation model for optimizing train movement in railway traffic. Here a kind of single-track railway is considered. Our aim is to reduce the energy consumption of train movement and ensure the train being on time by controlling the velocity curve of train movement. The simulation results indicate that the proposed model is effective for optimizing train movement. In addition, some major characteristics of train movement can be well captured. This method provides a new way to optimize train movement in railway traffic.
Energy saving and emission reduction for railway systems should not only be studied from a technical perspective but should also be focused on management and economics. On the basis of relevant trainscheduling models for train operation management, in this paper we introduce an extended multi-objective trainscheduling optimization model considering locomotive assignment and segment emission constraints for energy saving. The objective of setting up this model is to reduce the energy and emission cost as well as total passenger- time. The decision variables include continuous variables such as train arrival and departure time, and binary vari- ables such as locomotive assignment and segment occu- pancy. The constraints are concerned with train movement, trip time, headway, and segment emission, etc. To obtain a non-dominated satisfactory solution on these objectives, a fuzzy multi-objective optimization algorithm is employed to solve the model. Finally, a numerical example is performed and used to compare the proposed model with the existing model. The results show that the proposed model can reduce the energy consumption, meet exhausts emission demands effectively by optimal locomotive assignment, and its solution methodology is effective.