Based on previous studies on the internal structures of fault belts, the fault belts in the Laoyemiao Oilfield of the Nanpu Sag can be divided into three units, a crushed zone, an upper induced fracture zone and a lower induced fracture zone according to the log response characteristics. The upper induced fracture zone is characterized by the development of pervasive fractures and has a poor sealing or non-sealing capability. It therefore can act as pathways for hydrocarbon migration. The lower induced fracture zone consists of fewer fractures and has limited sealing capability. The crushed zone has a good sealing capability comparable to mudstone and can thus prevent lateral migration of fluid. Through physical modeling and comparing laboratory data with calculated data of oil column heights of traps sealed by faults, it is concluded that the fault-sealing capability for oil and gas is limited. When the oil column height reaches a threshold, oil will spill over from the top of reservoir along the lower induced fracture zone under the action of buoyancy, and the size of reservoir will remain unchanged. Analysis of the formation mechanisms of the fault-sealed reservoirs in the Nanpu Sag indicated that the charging sequence of oil and gas in the reservoir was from lower formation to upper formation, with the fault playing an important role in oil and gas accumulation. The hydrocarbon potential in reverse fault-sealed traps is much better than that in the consequent fault-sealed traps. The reverse fault-sealed traps are favorable and preferred exploration targets.
The oil, gas and water volumes revealed by the productivity of exploratory wells do not reflect the actual underground situations. Under the geologic conditions, a certain amount of dissolved natural gas is stored in oil or water. Based on the production test data of exploratory wells in the Tazhong uplift of the Tarim basin, this paper discusses in detail the differences in occurrence and distribution featrues between the surface and underground natural gases; presents a restoration of the surface gas occurrence to actual underground geologic conditions according to the dissolubility of natural gas under different temperature, pressure and medium conditions; and classifies the natural gas into three states, i.e. the oversaturated, saturated and undersaturated, according to its relative content underground. Through a comparative analysis of the differences in surface and underground occurrences of natural gas, it discusses the hydrocarbon reservoir formation mechanism and distribution rules, thereby providing guidances as new methods and technologies for the prediction of potential natural gas reservoir distribution in the study area.
The results presented in this paper indicated that the carbazole-type compounds have high thermal stabil- ity and also show stability in oxidation and bio-degradation. This kind of compounds still has high concentrations and a complete distribution in the analyzed dry asphalt samples, showing that they are particularly useful in the study of hydrocarbon migration of the paleo-pools. The difference in the contents of nitrogen compounds in the Silurian dry asphalts from the Awati, Tabei and Tazhong areas is attributed to the difference in the extent of oxidation and (or) bio-degradation for the areas; the Awati and Tabei areas underwent relatively strong oxidation and bio-degradation. During the first stage of hydrocarbon pool formation in the Silurian system in the Tazhong and Tabei areas of the Tarim Basin (at the end of the Silurian period) and at the second stage in the Awati area (in Permian), the hydrocar- bons experienced a long-distance migration.
LIU LuofuHUO HongGUO YongqiangCHEN LixinLI ShuangwenZHAO YandeLI YanWANG PingCHEN Zhijun