The MTD (mixture transition distribution) model based on Weibull distribution (WMTD model) is proposed in this paper, which is aimed at its parameter estimation. An EM algorithm for estimation is given and shown to work well by some simulations. And bootstrap method is used to obtain confidence regions for the parameters. Finally, the results of a real example--predicting stock prices--show that the WMTD model proposed is able to capture the features of the data from thick-tailed distribution better than GMTD (mixture transition distribution) model.
EM算法是近年来常用的求后验众数的估计的一种数据增广算法,但由于求出其E步中积分的显示表达式有时很困难,甚至不可能,限制了其应用的广泛性.而Monte Carlo EM算法很好地解决了这个问题,将EM算法中E步的积分用Monte Carlo模拟来有效实现,使其适用性大大增强.但无论是EM算法,还是Monte Carlo EM算法,其收敛速度都是线性的,被缺损信息的倒数所控制,当缺损数据的比例很高时,收敛速度就非常缓慢.而Newton-Raphson算法在后验众数的附近具有二次收敛速率.本文提出Monte Carlo EM加速算法,将Monte Carlo EM算法与Newton-Raphson算法结合,既使得EM算法中的E步用Monte Carlo模拟得以实现,又证明了该算法在后验众数附近具有二次收敛速度.从而使其保留了Monte Carlo EM算法的优点,并改进了Monte Carlo EM算法的收敛速度.本文通过数值例子,将Monte Carlo EM加速算法的结果与EM算法、Monte Carlo EM算法的结果进行比较,进一步说明了Monte Carlo EM加速算法的优良性.
In this paper, we show the invariance principle for the partial sum processes of fractionally integrated processes, otherwise known as I(d + m) processes, where |d| < 1/2 and m is a nonnegative integer, with strong near-epoch dependent innovations. The results are applied to the test of unit root. The conditions given improve previous results in the literature concerning fractionally integrated processes.