Using (S)-(-)-2-chloropropionie acid ethyl ester and N-methylimidazole as raw materials, we designed and synthesized three N-methylimidazolium chiral ionic liquids by the nucleophilic substitution reaction or anion exchange reaction. These chiral ionic liquids structures were analyzed with structure optimization calculation, IR, and HNMR. Their reaction mechanism and physical chemistry properties were explored. As a result, these chiral ionic liquids possess optical activity, low melting point, high conductivity, and weak acidity, etc. They can serve as effective reaction media as well as chiral catalysts. They are presently being investigated as dispersion agent in molecular imDrinting, nlover in our laboratory.
Several 1-vinyl-3-alkylimidazolium halogens [VRIM]X, which are functional materials with ethylenic bonds, were synthesized using the microwave-assisted synthesis method. Fourier transform infrared spectroscopy and 1H nuclear magnetic resonance spectroscopy were carded out to analyze the resultant structures. The electrochemical properties and solubility of [VRIM]Br were investigated and discussed in detail. The temperature dependence of pure [VRIM]Br over a wide temperature range of 298.15-323.15 K fitted the Arrhanius equation well. At certain low concentrations, the electrical conductivity of the [VRIM]Br solution significantly increased with increasing solution concentration. The electrical conductivities of the [VRIM]Br observed in water, methanol, and ethanol showed the trend σwater〉 σmethanol 〉σethanol Conductometry showed that the critical miceUe concentrations of the bromines in water, methanol, and ethanol were 6.8-6.9 × 10-6, 1.4-1.5 × 10-5, and 1.9-2.0×10-5 mol.L-1, respectively; these results indicate that [VRIM]Br is an excellent surfactant. The solubility of [VRIM]X in common solvents was determined at 293.15 K, and results indicated that a decrease in solubility could be observed with decreasing dielectric constant of the solvent, elongation of the alkyl chain of the cation, and increasing anion size. Solubility parameters were also determined according to the Hildebrand-Scoff equation.