This paper presents hybrid Reynolds-averaged Navier-Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid meth- ods studied in this work include the detached eddy simulation (DES) based on Spalart-Allmaras (S-A), Menter's k-ω shear-stress-transport (SST) and k-o9 with weakly nonlinear eddy viscosity formulation (Wilcox-Durbin+, WD+) models and the zonalANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower-upper symmetric-Gauss-Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows.
Zhixiang Xiao Yufei Zhang Jingbo Huang Haixin Chen Song Fu School of Aerospace Engineering,Tsinghua University,Beijing 100084,China
Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-eddy simulation) hybrid methods, detached eddy simulation (DES) and delayed-DES (DDES), are used to predict the base flow characteristics around the baseline Cy afterbody. All the RANS and hybrid methods are based on the two-equation SST (shear-stress transport) model with compressible corrections (CC). According to the comparison of measurements, both DES and DDES can produce more satisfactory results than RANS. RANS can only present the "stable" flow pat- terns, while the hybrid methods can demonstrate unsteady flow structures. DDES and DES results are little different from one another although the latter exhibits better agreement with the experiment. DES is taken to investigate the 5° BT and three-step afterbodies. The mean flow data and the instantaneous turbulent coherent structures are compared against available measurements.
Zhixiang Xiao Song Fu School of Aerospace Engineering,Tsinghua University, 100084 Beijing, China