A resolution method based on Gaussian-like distribution for overlapped linear sweep polarographic peaks was proposed to simultaneously detect the polymetallic components, such as Zn(Ⅱ) and Co(Ⅱ), coexisting in the leaching solution of zinc hydrometallurgy. A Gaussian-like distribution was constructed as the sub-model of overlapped peaks by analyzing the characteristics of linear sweep polarographic curve. Then, the abscissas of each peak and trough were pinpointed through multi-resolution wavelet decomposition, the curve and its derivative curves were fitted by using nonlinear weighted least squares (NWLS). Finally, overlapped peaks were resolved into independent sub-peaks based on fitted reconstruction parameters. The experimental results show that the relative error of half-wave potential pinpointed by multi-resolution wavelet decomposition is less than 1% and the accuracy of Ip fitted by NWLS is higher than 96%. The proposed resolution method is effective for overlapped linear sweep polarographic peaks of Zn(Ⅱ) and Co(Ⅱ).
Reagents are optimized for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in zinc sulfate solution, which contains an extremely large excess of Zn^(2+). First, the reagents and their doses for the experiment are selected according to the characteristics of the zinc sulfate solution. Then, the reagent doses are optimized by analyzing the influence of reagent dose on the polarographic parameters(i.e. half-wave potential E_(1/2) and limiting diffusion current I_p). Finally, the optimization results are verified by simultaneously determining trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+). The determination results indicate that the optimized reagents exhibit wide linearity, low detection limits, high accuracy and good precision for the simultaneous determination of trace amounts of Cu^(2+), Cd^(2+) and Co^(2+) in the presence of an extremely large excess of Zn^(2+).
WANG Guo-weiYANG Chun-huaZHU Hong-qiuLI Yong-gangGUI Wei-hua
针对湿法炼锌砷盐除钴过程工况变化频繁和操作参数之间具有强耦合关系,导致操作参数优化困难的问题,提出了一种基于模糊操作模式的操作参数协同优化方法.根据大量的砷盐除钴工业运行数据,提炼初始操作模式库,根据入口工况参数,采用模糊匹配方法检索出相似操作模式,在操作模式重用时综合考虑系统参数缓慢变化和资源消耗的特点,然后采用灰色模糊最小二乘支持向量机(Least squares support vector machine,LSSVM)评估操作模式重用后的操作参数的可行性,并根据评估结果采用模糊专家规则修正操作参数.在工况发生变化时,系统能自动优化设定操作参数.工业验证结果表明,本文提出的操作参数协同优化方法保证了生产稳定,可有效提高净化后溶液中钴离子浓度的合格率和降低锌粉的消耗.
The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.
The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential(ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidationreduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operationalpattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment.
Bei SunChunhua YangHongqiu ZhuYonggang LiWeihua Gui