A weak nonlinear model of a two-layer barotropic ocean with Rayleigh dissipation is built.The analytic asymptotic solution is derived in the mid-latitude stationary wind field,and the physical meaning of the corresponding problem is discussed.
在利用1950—2009年NCEP(National Center for Environmental Prediction)资料分析风场数据的基础上,计算吕宋海峡的Ekman输运,研究表明其存在显著的季节变化,除了夏季外,其它季节均为由太平洋向南海输运。分析吕宋海峡Ekman输运和南海海盆表征上层热力状况的海表面温度SST(Sea Surface Temperature)之间的关系发现:在年内时间尺度上,两者不存在显著的同期相关,Ekman输运对SST的影响开始于一个月之后,从北部向南扩展,第二个月最为明显,并扩展至整个海盆,第三个月开始衰减,第四个月影响消失,且相关性为正;在年际尺度上,吕宋海峡Ek-man输运的异常同南海SSTA(Sea Surface Temperature Abnormal)的第二模态存在显著的相关联系,并且吕宋海峡Ekman输运和南海SSTA的相关关系在北部为正,南部为负。吕宋海峡Ekman输运调制南海大尺度环流,通过暖、冷平流的作用影响南海SST的变化。
In the past 10 years (2004-2013), annual open cruise during late summer provided new opportunities for comprehensive studies in the Northern South China Sea (NSCS). The 10-year field investigation program was carried out by the South China Sea Institute of Oceanology, Chinese Academy of Sciences (SCSIO, CAS). Measurements inclu- ded water mass property, ocean circulation, atmospheric structure, and chemical and biological elements. The observation data collected during these open cruises have been intensively used in the studies of marine oceanographic, meteorological, chemical, and biological processes in the NSCS. In this study, comprehensive assessment of data application in oceanographic and meteorological studies is provided: (1) the property and variability of water masses in different layers; (2) the distribution of main currents and three-dimensional structure of mesoscale eddies; and (3) atmospheric structure and its feedback to the ocean. With the continuance of open cruises, it is feasible to construct high- quality, gridded climatological marine meteorological datasets in the NSCS in the near future.
Different advection schemes and two-equation turbulence closure models based on eddy viscosity concept are used to compute the drag coefficient around a circular cylinder at high Reynolds number (106).The numerical results from these simulations are compared with each other and with experimental data in order to evaluate the performance of different combinations of advection scheme and two-equation turbulence model.The separate contributions from form drag and friction drag are also ana-lyzed.The computational results show that the widely used standard k-ε turbulence closure is not suitable for such kind of study,while the other two-equation turbulence closure models produce acceptable results.The influence of the different advection schemes on the final results are small compared to that produced by the choice of turbulence closure method. The present study serves as a reference for the choice of advection schemes and turbulence closure models for more complex numerical simulation of the flow around a circular cylinder at high Reynolds number.