<正>The partially observed control problem is considered for backward doubly stochastic systems with control en...
ZHU Qingfeng~(1,2),WANG Tianxiao~2,SHI Yufeng~2 1.School of Statistics and Mathematics,Shandong University of Finance,Jinan 250014,P.R.China 2.School of Mathematics,Shandong University,Jinan 250100,P.R.China
The authors discuss one type of general forward-backward stochastic differential equations (FBSDEs) with Ito's stochastic delayed equations as the forward equations and anticipated backward stochastic differential equations as the backward equations.The existence and uniqueness results of the general FBSDEs are obtained.In the framework of the general FBSDEs in this paper,the explicit form of the optimal control for linear-quadratic stochastic optimal control problem with delay and the Nash equilibrium point for nonzero sum differential games problem with delay are obtained.
In this article, empirical likelihood inference for estimating equation with missing data is considered. Based on the weighted-corrected estimating function, an empirical log-likelihood ratio is proved to be a standard chiqsquare distribution asymptotically under some suitable conditions. This result is different from those derived before. So it is convenient to construct confidence regions for the parameters of interest. We also prove that our proposed maximum empirical likelihood estimator θ is asymptotically normal and attains the semiparametric efficiency bound of missing data. Some simulations indicate that the proposed method performs the best.
The notion of bridge is introduced for systems of coupled forward-backward doubly stochastic differential equations (FBDSDEs). It is proved that if two FBDSDEs are linked by a bridge, then they have the same unique solvability. Consequently, by constructing appropriate bridges, we obtain several classes of uniquely solvable FBDSDEs. Finally, the probabilistie interpretation for the solutions to a class of quasilinear stochastic partial differential equations (SPDEs) combined with algebra equations is given. One distinctive character of this result is that the forward component of the FBDSDEs is coupled with the backvzard variable.
In this paper, we prove that the generator g of a class of backward stochastic differential equations (BSDEs) can be represented by the solutions of the corresponding BSDEs at point (t, y, z), when the terminal data is in Lp spaces, for 1 〈 p ≤ 2.
Backward doubly stochastic differential equations driven by Brownian motions and Poisson process (BDSDEP) with non-Lipschitz coefficients on random time interval are studied. The probabilistic interpretation for the solutions to a class of quasilinear stochastic partial differential-integral equations (SPDIEs) is treated with BDSDEP. Under non-Lipschitz conditions, the existence and uniqueness results for measurable solutions to BDSDEP are established via the smoothing technique. Then, the continuous depen- dence for solutions to BDSDEP is derived. Finally, the probabilistic interpretation for the solutions to a class of quasilinear SPDIEs is given.
A stochastic maximum principle for the risk-sensitive optimal control prob- lem of jump diffusion processes with an exponential-of-integral cost functional is derived assuming that the value function is smooth, where the diffusion and jump term may both depend on the control. The form of the maximum principle is similar to its risk-neutral counterpart. But the adjoint equations and the maximum condition heavily depend on the risk-sensitive parameter. As applications, a linear-quadratic risk-sensitive control problem is solved by using the maximum principle derived and explicit optimal control is obtained.