From the point of view of approximate symmetry, the modified Korteweg-de Vries-Burgers (mKdV-Burgers) equation with weak dissipation is investigated. The symmetry of a system of the corresponding partial differential equations which approximate the perturbed mKdV-Burgers equation is constructed and the corresponding general approximate symmetry reduction is derived; thereby infinite series solutions and general formulae can be obtained. The obtained result shows that the zero-order similarity solution to the mKdV-Burgers equation satisfies the Painleve II equation. Also, at the level of travelling wave reduction, the general solution formulae are given for any travelling wave solution of an unperturbed mKdV equation. As an illustrative example, when the zero-order tanh profile solution is chosen as an initial approximate solution, physically approximate similarity solutions are obtained recursively under the appropriate choice of parameters occurring during computation.
The approximate direct reduction method is applied to the perturbed mKdV equation with weak fourth order dispersion and weak dissipation. The similarity reduction solutions of different orders conform to formal coherence, accounting for infinite series reduction solutions to the original equation and general formulas of similarity reduction equations. Painleve Ⅱ type equations, hyperbolic secant and Jacobi elliptic function solutions are obtained for zeroorder similarity reduction equations. Higher order similarity reduction equations are linear variable coefficient ordinary differential equations.
By applying the fermionization approach, the inverse version of the bosoniza- tion approach, to the Sharma-Tasso-Olver (STO) equation, three simple supersymmetric extensions of the STO equation are obtained from the Painlee analysis. Furthermore, some types of special exact solutions to the supersymmetric extensions are obtained.
By means of the classical symmetry method, a hyperbolic Monge-Ampere equa- tion is investigated. The symmetry group is studied and its corresponding group invariant solutions are constructed. Based on the associated vector of the obtained symmetry, the authors construct the group-invariant optimal system of the hyperbolic Monge-Ampere equation, from which two interesting classes of solutions to the hyperbolic Monge-Ampere equation are obtained successfully.
The Painleve integrability and exact solutions to a coupled nonlinear Schrodinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass the Painleve test. Twenty periodic cnoidal wave solutions are obtained by applying the rational expansions of fundamental Jacobi elliptic functions. The exact solutions to the CNLS equation are used to explain the generation and propagation of atmospheric gravity waves.
A new four-dimensional chaotic system with a linear term and a 3-term cross product is reported. Some interesting figures of the system corresponding different parameters show rich dynamical structures.
This paper investigates an important high-dimensional model in the atmospheric and oceanic dynamics-(3+1)- dimensional nonlinear baroclinic potential vorticity equation by the classical Lie group method. Its symmetry algebra, symmetry group and group-invariant solutions are analysed. Otherwise, some exact explicit solutions are obtained from the corresponding (2+1)-dimensional equation, the inviscid barotropic nondivergent vorticy equation. To show the properties and characters of these solutions, some plots as well as their possible physical meanings of the atmospheric circulation are given out.
The prolongation structure methodologies of Wahlquist-Estabrook [Wahlquist H D and Estabrook F B 1975 J. Math. Phys. 16 1] for nonlinear differential equations are applied to a variable-coefficient KdV equation. Based on the obtained prolongation structure, a Lie algebra with five parameters is constructed. Under certain conditions, a Lie algebra representation and three kinds of Lax pairs for the variable coefficient KdV equation are derived.
By means of the reductive perturbation method, three types of generalized (2+l)-dimensional Kadomtsev- Petviashvili (KP) equations are derived from the baroclinic potential vorticity (BPV) equation, including the modified KP (mKP) equation, standard KP equation and cylindrical KP (cKP) equation. Then some solutions of generalized cKP and KP equations with certain conditions are given directly and a relationship between the generalized mKP equation and the mKP equation is established by the symmetry group direct method proposed by Lou et al. From the relationship and the solutions of the mKP equation, some solutions of the generalized mKP equation can be obtained. Furthermore, some approximate solutions of the baroclinic potential vorticity equation are derived from three types of generalized KP equations.
Variable coefficient nonlinear systems, the Korteweg de Vries (KdV), the modified KdV (mKdV) and the nonlinear Schrǒdinger (NLS) type equations, are derived from the nonlinear inviscid barotropic nondivergent vorticity equation in a beta-plane by means of the multi-scale expansion method in two different ways, with and without the so-called y-average trick. The non-auto-Bǎcklund transformations are found to transform the derived variable coefficient equations to the corresponding standard KdV, mKdV and NLS equations. Thus, many possible exact solutions can be obtained by taking advantage of the known solutions of these standard equations. Further, many approximate solutions of the original model are ready to be yielded which might be applied to explain some real atmospheric phenomena, such as atmospheric blocking episodes.