The material characteristics of a structure will change with temperature variation,and will induce stress within the structure.Currently,the optimal design for the topology of compliant mechanisms is mainly performed in single physical field.However,when compliant mechanisms work in high temperature environments,their displacement outputs are generated not only by mechanical load,but also by the temperature variation which may become the prominent factor.Therefore,the influence of temperature must be considered in the design.In this paper,a novel optimization method for multi-objective topology of thermo-mechanical compliant mechanisms is presented.First,the thermal field is analyzed with finite-element method,where the thermal strain is taken into account in the constitutive relation,and the equivalent nodal thermal load is derived with the principle of virtual work.Then the thermal load is converted into physical loads in elastic field,and the control equation of the thermo-mechanical compliant mechanism is obtained.Second,the mathematical model of the multi-objective topology optimization is built by incorporating both the flexibility and stiffness.Meanwhile,the coupling sensitivity function and the sensitivity analysis equations of thermal steady-state response are derived.Finally,optimality criteria algorithm is employed to obtain numerical solution of the multi-objective topology optimization.Numerical examples show that the compliant mechanisms have better performance and are more applicable if the temperature effect is taken into account in the design process.The presented modeling and analysis methods provide a new idea and an effective approach to topology optimization of compliant mechanisms in electrothermic coupling field and multiphysics fields.
LI DongmeiZHANG XianminGUAN YishengZHANG HongWANG Nianfeng
There are two kinds of piezoelectric pumps:check valve pumps and valve-less pumps.Whether to use a check valve or not depends upon the application occasion.To achieve large backpressure for higher flow rates,the pump with check valve is desirable.However,adding check valves implies more complex structure and higher probability of valve blocking,etc.In order to solve the problem,effective driving and transport mechanics with compact construction and reliable service are being sought.In this paper,using the second-order longitudinal vibration mode of a bar-shaped piezoelectric vibrator for driving fluid,a piezoelectric pump is successfully made.The proposed piezoelectric pump consists of coaxial cylindrical shells and a bar-shaped piezoelectric vibrator,which has a disk part and a cone part.The lead zirconium titanate ceramic rings fixed in the vibrator are polarized along the thickness direction.When the second-order longitudinal vibration of the vibrator along its axis is excited,the disk part of the vibrator changes periodically the volume of the chamber and the cone part acts as a pin valve,driving the fluid from the inlet port to the outlet port.Finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software ANSYS.Components of the piezoelectric pump were manufactured,assembled,and tested for flow rate and backpressure to validate the concepts of the proposed pump and confirm the simulation results of modal and harmonic analyses.The test results show that the performance of the proposed piezoelectric pump is about 910 mL/min in flow rate with a highest pressure level of 1.5 kPa under 400 V peak-to-peak voltage and 51.7 kHz operating frequency.It is confirmed that this bar-shaped piezoelectric transducer can be effectively applied in fluid transferring mechanism of pump through this research.