A microwave-H202 process for sludge pretreatment exhibited high efticiencies of releasing organics, nitrogen, and phosphorus, but large quantifies of H202 residues were detected. A uniform design method was thus employed in this study to further optimize H202 dosage by investigating effects of pH and H202 dosage on the amount of 1-I202 residue and releases of organics, nitrogen, and phosphorus. A regression model was established with pH and H202 dosage as the independent variables, and H202 residue and releases of organics, nitrogen, and phosphorus as the dependent variables. In the optimized microwave-H202 process, the pH value of the sludge was firstly adjusted to 11.0, then the sludge was heated to 80~C and H202 was dosed at a H202 :mixed liquor suspended solids (MLSS) ratio of 0.2, and the sludge was finally heated to 100~C by microwave irradiation. Compared to the microwave-H202 process without optimization, the H202 dosage and the utilization rate of H202 in the optimized microwave-H202 process were reduced by 80% and greatly improved by 3.87 times, respectively, when the H202:MLSS dosage ratio was decreased from 1.0 to 0.2, resulting in nearly the same release rate of soluble chemical oxygen demand in the microwave-H202 process without optimization at H202:MLSS ratio of 0.5.
Microwave(MW) hybrid processes are able to disrupt the flocculent structure of complex waste activated sludge,and help promote the recovery of phosphorus as struvite.In this study,to optimize struvite yield,(1) the characteristics of matter released in MW-hybrid treatments were compared,including MW,MW-acid,MW-alkali,MW-H2O2,and MW-H2O2- alkali.The results showed that selective release of carbon,nitrogen,phosphorus,Ca^2+,and Mg^2+ achieved by sludge pretreatment using MW-hybrid processes.MW-H2O2 is the recommended sludge pretreatment process for phosphorus recovery in the form of struvite.The ratio of Mg^2+:NH4^+-N:PO4^3--P was 1.2:2.9:1 in the supernatant.(2) To clarify the effects of organic matter on struvite recovery,the composition and molecular weight distribution of organic matters were analyzed.Low molecular weight COD was found to facilitate the removal rate of NH4^+-N and PO4^3-P via crystallization,and the amorphous struvite crystals(〈1 kDa) from the filtered solutions had high purity.Therefore,the present study reveals the necessity of taking into consideration the interference effect of high molecular weight organic matters during struvite crystallization from sewage sludge.