Epigallocatechin-3-O-(3-O-methyl) gallate(EGCG3"Me) present in leaves of Camellia sinensis has many beneficial biological activities for human health. However, EGCG3"Me occurs naturally in tea leaves in extremely limited quantities. Finding an enzyme from C. sinensis to catalyze the synthesis of EGCG3"Me is an alternative method to make up for the scarcity of EGCG3"Me in natural situations. In the present study, a complementary DNA(c DNA) encoding region and genomic DNA of the caffeoyl-coenzyme A O-methyltransferase(CCo AOMT) gene were isolated from C. sinensis(designated Cs CCo AOMT). Nucleotide sequence analysis of Cs CCo AOMT revealed an open reading frame of 738 bp that encodes a polypeptide with a predicted molecular weight of 28 k Da, which correlated well with the results of sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE). The full-length DNA sequence(2678 bp) contained five exons and four introns. The deduced amino acid sequence of Cs CCo AOMT shared 92% identity with CCo AOMTs from Codonopsis lanceolata and Betula luminifera. The catalytic activity of Cs CCo AOMT was analyzed. Three monomethylated epigallocatechin-3-O-gallate(EGCG) compounds(EGCG4"Me, EGCG3"Me, and EGCG3'Me) were produced by Cs CCo AOMT with K m in the micromolar range. Real-time polymerase chain reaction(RT-PCR) experiments indicated that the Cs CCo AOMT transcript was present at low levels during the early stages of leaf maturity(the first leaf and bud on a shoot) but the relative expression was augmented at advanced stages of leaf maturity(the third or fourth leaf on a shoot), which accorded well with changes in EGCG3"Me content in fresh leaves. Hence, we concluded that Cs CCo AOMT catalyzes the syntheses of methylated EGCGs.
Yue ZHANGHai-peng LVCheng-ying MALi GUOJun-feng TANQun-hua PENGZhi LIN