This study assesses surface urban heat island (UHI) and its associated surface physical characteristics using remote sensing approaches. TERRA/MODIS images acquired in 2005 in three different seasons were selected to generate land surface tem-perature and surface characteristics for the Changsha-Zhuzhou-Xiangtan metropolitan area in China. The intensity of urban heat is-land effects and its seasonal variations were examined. The result showed that UHI effects were significant both in the summer and the spring. Land surface temperatures in the city were 8 ℃ to 10℃ warmer than those in surrounding rural areas in the spring and the summer seasons. Although UHI effects exist in winter, they are not significant. Land surface temperature in the city was 4℃ warmer than that in surrounding rural areas in winter. This study uses normalized difference vegetation index (NDVI) and normal-ized difference built-up index (NDBI) as indicators of surface physical characteristics and investigates the relationship among land surface temperature (LST), NDVI and NDBI. The results from this study indicate that, while the relationship between LST and NDVI changes in different seasons, there is a strong positive linear relationship between NDBI and LST for all seasons. The amount of slope and intercept of the linear relationship between NDBI and LST can indicate the magnitude of UHI for different seasons. This finding suggests that NDBI provides an alternative physical indicator for analyzing LST quantitatively over different seasons, and therefore providing a useful way to study UHI effects using remote sensing.
ZENG YongnianHUANG WeiZHAN E BenjaminZHANG HonghuiLIU Huimin
The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.