您的位置: 专家智库 > >

广东省自然科学基金(102528000010000)

作品数:2 被引量:1H指数:1
相关作者:徐伟戎海武方同王向东更多>>
相关机构:佛山大学西北工业大学更多>>
发文基金:国家自然科学基金广东省自然科学基金更多>>
相关领域:理学更多>>

文献类型

  • 2篇中文期刊文章

领域

  • 2篇理学

主题

  • 1篇随机平均法
  • 1篇平均法
  • 1篇NONLIN...
  • 1篇RANDOM
  • 1篇RESONA...
  • 1篇RESPON...
  • 1篇DEGREE...
  • 1篇NARROW...

机构

  • 1篇佛山大学
  • 1篇西北工业大学

作者

  • 1篇王向东
  • 1篇方同
  • 1篇戎海武
  • 1篇徐伟

传媒

  • 1篇振动工程学报
  • 1篇Chines...

年份

  • 1篇2011
  • 1篇2010
2 条 记 录,以下是 1-2
排序方式:
Resonance response of a single-degree-of-freedom nonlinear vibro-impact system to a narrow-band random parametric excitation
2011年
The resonant response of a single-degree-of-freedom nonlinear vibro-impact oscillator with a one-sided barrier to a narrow-band random parametric excitation is investigated. The narrow-band random excitation used here is a bounded random noise. The analysis is based on a special Zhuravlev transformation, which reduces the system to one without impacts, thereby permitting the applications of random averaging over "fast" variables. The averaged equations are solved exactly and an algebraic equation of the amplitude of the response is obtained for the ease without random disorder. The methods of linearization and moment are used to obtain the formula of the mean-square amplitude approximately for the case with random disorder. The effects of damping, detuning, restitution factor, nonlinear intensity, frequency and magnitude of random excitations are analysed. The theoretical analyses are verified by numerical results. Theoretical analyses and numerical simulations show that the peak response amplitudes will reduce at large damping or large nonlinear intensity and will increase with large amplitude or frequency of the random excitations. The phenomenon of stochastic jump is observed, that is, the steady-state response of the system will jump from a trivial solution to a large non-trivial one when the amplitude of the random excitation exceeds some threshold value, or will jump from a large non-trivial solution to a trivial one when the intensity of the random disorder of the random excitation exceeds some threshold value.
苏敏邦戎海武
窄带随机噪声参数激励下非线性碰撞系统的响应被引量:1
2010年
研究了单自由度非线性单边约束碰撞系统在窄带随机噪声参数激励下的响应问题,窄带噪声采用有界随机噪声模型。用Zhurav lev变换将碰撞系统转化为连续的非碰撞系统,然后用随机平均法得到了关于慢变量的随机微分方程。在没有随机扰动情形,给出了系统响应幅值满足的代数方程;在有随机扰动情形,结合线性化方法和矩方法给出了系统响应幅值二阶矩近似解的解析表达式。讨论了系统阻尼项、非线性项、窄带随机噪声的带宽、中心频率和振幅以及碰撞恢复系数等参数对于系统响应的影响。理论计算和数值模拟表明,系统响应将随激励频率和振幅的增大而增大,而随系统阻尼和非线性强度的增大而减少。并发现了随机跳跃现象,即当随机激励的振幅超过某个阈值时,系统的稳态响应将从零解跳跃为一个较大的非零解;而当随机扰动的强度超过某个阈值时,系统的稳态响应将从一个较大的非零解跳跃为零解。
戎海武王向东徐伟方同
关键词:随机平均法
共1页<1>
聚类工具0