Yin-mountain Hilly Area is one of the ideal regions for potato (Solanum tuberosum) production in China. However, potato yield is severely limited as a result of rain-fed crop mode due to water deficiency, as well as an inadequate farming practices. In this study, yield gaps were determined by using attainable yield (Ya) as a benchmark under optimized management practices, i.e., micro-ridge and side planting with plastic-mulching (MS), and flat planting with plastic-mulching (PM). The yields under MS and PM modes are defined as Yal and Ya2, respectively. Under the same field with MS and PM modes but different densities and fertilizer usages and so on, it was defined as simulated farmers' practices. The yield of simulated farmers' practices (Yfl) reached 57.3 and 69.6% of Yal and Ya2, respectively, while the average yield of 298 randomly surveyed farmers (Yf2) reached only 37.0 and 47.8% of Yal and Ya2 for rain-fed potato, respectively. The gaps of water use efficiency exhibited similar pattern. Further analysis shows that improper measures in rainwater conservation and accumulation, and other management practices contributed to 18.5, 18.2, and 42.6% of yield gap between Yal and Yf2. Improper nutrition management, including overuse of nitrogen and the deficiency of phosphorus andpotassium supplication, was one of the important reasons of yield gap. The results indicate the possibilities of increasing rain-fed potato yields by optimized water and fertilizermanagements in the Yin-mountain Hilly Area.
The hand-held soil plant analysis development (SPAD) chlorophyll meter nitrogen status of the potato and guiding fertilization recommendations N recommendation, it is critical to establish the threshold SPAD value has proved to be a promising tool in evaluating the n the process of N evaluation of potato plants and (SPAD reading), below which nitrogen supplement is required. And taking convenient using into account, the threshold needs to be dynamic throughout the potato growing season so that the users can test their potato plants and make fertilization decision at any growing time of potato. To complete this goal, field experiments with different nitrogen supply levels were conducted in different sites in northern China from 2009 to 2011. The results showed that threshold SPAD values decrease as the growing season progresses for all cultivars and planting sites. By statistical analysis, the threshold regression models were established respectively as: y=-0.003χ2-0.0507χ+58.213 (y, threshold SPAD value; χ, days after emergence) for the potato cultivar Kexin 1, and y=-0.003χ2+0.017χ+52.489 (y, threshold SPAD value; χ, days after emergence) for the cultivar Shepody, from which, the threshold SPAD value at any day after emergence can be calculated.