We study the features of electromagnetically induced transparency(EIT) in a single Λ-type three-level atom placed in a high-finesse cavity under the action of a coupling laser and a probe laser.Our calculations show that three transparency windows appear when the pump strength is large enough.This can be explained by the residual pump in the cavity mostly resulting in energy splitting.The level |3 is split into four slightly different energy levels,and interference takes place between the excitation pathways.Furthermore,it is also shown that the frequencies of the EIT windows can be tuned by changing the coupling field detuning 2,and that the reflection profile is very sensitive to the cavity field detuning △c.
Using the master equation approach to a V-type three-level atom inside a high-finesse single-mode cavity in the strong coupling condition, we demonstrate the approximation of eliminating populations of atomic excited states, which is widely used in the field of the atom cavity systems [Hechenblaikner G, Gangl M, Horak P and Ritsch H 1998 Phys. Rev. A 58 3030]; Liu L W, Tan T and Xu Y 2008 J. Mod. Opt. 56 968; Cho J, Angelakis D G and Bose S 2008 Phys. Rev. A 78 062338. This is reflected in the deviation of the population 5, of which the value is 10^-3 - 10^-2. We further find the deviation of the dipole force and demonstrate that the deviation of atomic population will not notably affect the dipole force of the atom in the strong coupling condition. A relevant experimental case is also presented.
Using the algebraic dynamical method, this paper investigates the laser cooling of a moving two-level atom coupled to a cavity field. Analytical solutions of optical forces and the cooling temperatures are obtained. Considering Rb atoms as an example, it finds that the numerical results are relevant to the recent experimental laser cooling investigations.
A theoretical study is carried out for the modification and implication of the effect on the type three level atom in a high-finesse optical cavity driven by light field including spontaneous emission and the cavity decay. Analytic expressions for the dipole force, the friction force, the optical potentials and the friction coefficient are obtained. Then the numerical and graphical methods are used to investigate the friction coefficient with the controlling parameters. It is shown that the friction coefficient is strongly dependent on the controlling parameters. The cooling rate can increase by one order of magnitude more than that of a two-level atomic system. The reason can be given using the dressed states and the Sisyphus cooling mechanism, which would stimulate further experimental investigations.
The mean-field dynamics of undistinguishable two-species Bose Josephson junction coupled to a single mode high- finesse optical cavity is investigated. From the Hamiltonian, the phase portrait and the stationary points are given. It is shown that the role of the interspecies interaction equals the intraspecies interaction under suitable conditions. As the interspecies interaction increases, the trapped atoms will start tunneling between the two wells unnaturally for some special cases.
Using the algebraic dynamical method, the entanglement dynamics of an atom-field bipartite system in a mixed state is investigated. The atomic center-of-mass motion and the field-mode structure are also included in this system. We find that the values of the detuning and the average photon number are larger, the amplitude of the entanglement is smaller, but its period does not increase accordingly. Moreover, with the increase of the field-mode structure parameter and the transition photon number, the amplitude of the entanglement varies slightly while the oscillation becomes more and more fast. Interestingly, a damping evolution of the entanglement appears when both the detuning and the atomic motion are considered simultaneously.