In this paper, we give a method which aUows us to construct a class of Parseval frames for L2(R) from Fourier frame for L2(X). The result shows that the function which generates a Oabor frame by translations and modulations has "good" properties, i.e., it is suifficiently smooth and compactly supported.
We show that every Bessel sequence (and therefore every frame) in a separable Hilbert space can be expanded to a tight frame by adding some elements. The proof is based on a recent generalization of the frame concept, the g-frame, which illustrates that g-frames could be useful in the study of frame theory. As an application, we prove that any Gabor frame can be expanded to a tight frame by adding one window function.
A sufficient condition for affine frame with an arbitrary matrix dilation is presented. It is based on the univariate case by Shi, and generalizes the univariate results of Shi, Casazza and Christensen from one dimension with an arbitrary real number a (a 〉 1) dilation to higher dimension with an arbitrary expansive matrix dilation.