The kinetic Monte Carlo method, which based on the Multi-States Ising Model, was applied to simulate the effect of microelements on the microstructural evolution of Al-Ag alloys during initial aging stage. The simulation results suggest that the microelements In, Sn and Be have a dramatic depression effect on the Ag clustering because of their strong tendency to co-existed with vacancies. There are no significant effects on the process of Ag clustering in Al-Ag alloys containing Li or Cd, because of little interaction between Li/Cd and Ag/vacancies. Microelements can influence the aging by interacting with vacancies and the atoms of precipitated composition, in which the former seems more important. In this model, “vacancy-locking” and “vacancy clusters” are two important mechanisms in the aging process.
Indium-tin-oxide(ITO)films were prepared on the quarts glass by sol-gel technique.Effects of different heat treatment temperatures and cooling methods on the morphological,optical and electrical properties of ITO films were measured by TG/DTA, IR,XRD,SEM,UV-VIS spectrometer and four-probe apparatus.It is found that the crystallized ITO films exhibit a polycrystalline cubic bixbyite structure.The heat treatment process has significant effects on the morphological,optical and electrical properties of ITO films.Elevating the heat treatment temperature can perfect the crystallization process of ITO films,therefore the optical and electrical properties of ITO films are improved.But the further increasing of heat treatment temperature results in the increment of ITO films’resistivity.Compared with ITO films elaborated by furnace cooling,those prepared through air cooling have following characteristics as obviously decreased crystalline size,deeply declined porosity,more compact micro-morphology,improved electrical property and slightly decreased optical transmission.
The effects of trace silver and magnesium additions on the microstructure and me chanical properties of the Al-Cu-Li alloys were investigated. The experimental results indicate that the effect of combined additions of Ag and Mg is the most obvious,the next is that of individual addition of Mg, and that of individual a ddition of Ag is the least. The addition of Ag and Mg in Al-Cu-Li alloy accele rates the precipitation of T1 and results in increasing the ageing hardness and strength. Prior cold work significantly improves the tensile strength by enhanci ng T1 precipitation in all the alloys investigated.