A high-precision nominal flight profile,involving controllers′intentions is critical for 4Dtrajectory estimation in modern automatic air traffic control systems.We proposed a novel method to effectively improve the accuracy of the nominal flight profile,including the nominal altitude profile and the speed profile.First,considering the characteristics of trajectory data,we developed an improved K-means algorithm.The approach was to measure the similarity between different altitude profiles by integrating the space warp edit distance algorithm,thereby to acquire several fitted nominal flight altitude profiles.This approach breaks the constraints of traditional K-means algorithms.Second,to eliminate the influence of meteorological factors,we introduced historical gridded binary data to determine the en-route wind speed and temperature via inverse distance weighted interpolation.Finally,we facilitated the true airspeed determined by speed triangle relationships and the calibrated airspeed determined by aircraft data model to extract a more accurate nominal speed profile from each cluster,therefore we could describe the airspeed profiles above and below the airspeed transition altitude,respectively.Our experimental results showed that the proposed method could obtain a highly accurate nominal flight profile,which reflects the actual aircraft flight status.
由于飞行剖面识别是航空器四维(Four-dimensional,4D)航迹预测研究的热点问题,提出一种基于航空器气象资料下传(Aircraft meteorological data relay,AMDAR)数据的全飞行过程剖面生成方法,包括由高度-航程构成的标称高度剖面和空速-航程构成的标称速度剖面。首次将动态空间规整算法(Dynamic space warping,DSW)应用到飞行高度剖面的相似距离计算中,计算出标称飞行高度剖面;为解决在地速未知情况下标称速度剖面的计算问题,结合大椭圆距离算法与航空器基本性能数据库(Base of aircraft data,BADA),给出一种标称飞行速度剖面的计算方法,该方法保留了AMDAR实测历史数据中所隐含的飞行意图与气象因素。实际算例表明,本文提出的方法能够有效地得到真实反映航空器飞行状态的全飞行剖面。