This paper presents a low voltage, low power RF/analog front-end circuit for passive ultra high frequency (UHF) radio frequency identification (RFID) tags. Temperature compensation is achieved by a reference generator using sub-threshold techniques. The chip maintains a steady system clock in a temperature range from - 40 to 100℃. Some novel building blocks are developed to save system power consumption,including a zero static current power-on reset circuit and a voltage regulator. The RF/analog front-end circuit is implemented with digital base-band and EEPROM to construct a whole tag chip in 0. 18μm CMOS EEPROM technology without Schottcky diodes. Measured results show that the chip has a minimum supply voltage requirement of 0.75V. At this voltage, the total current consumption of the RF/analog frontend circuit is 4.6μA.
提出了一种全新的射频识别(RFID)数字接收机的实现方案。针对RFID系统实时性的要求,该设计采用简化的相关算法取代数字锁相环结构,快速准确地捕获频率范围在31.2kHz-780.8kHz内的突发信号,并实现接收数据解码。与采用过零检测方案的数字接收机相比,本设计具有更强的抗干扰能力。该数字接收机在Altera Stratix II EP2S60上验证通过,取得了良好的性能。
Single-poly,576bit non-volatile memory is designed and implemented in an SMIC 0.18μm standard CMOS process for the purpose of reducing the cost and power of passive RFID tag chips. The memory bit cell is designed with conventional single-poly pMOS transistors, based on the bi-directional Fowler-Nordheim tunneling effect, and the typical program/erase time is 10ms for every 16bits. A new ,single-ended sense amplifier is proposed to reduce the power dissipation in the current sensing scheme. The average current consumption of the whole memory chip is 0.8μA for the power supply voltage of 1.2V at a reading rate of 640kHz.