We present the design and optimization of a prompt T-ray neutron activation analysis (PGNAA) thermal neutron output setup based on Monte Carlo simulations using MCNP5 computer code. In these simulations, the moderator materials, reflective materials, and structure of the PCNAA 2526f neutrons of thermal neutron output setup are optimized. The simulation results reveal that the thin layer paraffin and the thick layer of heavy water moderating effect work best for the 252Cf neutron spectrum. Our new design shows a significantly improved per- formance of the thermal neutron flux and flux rate, that are increased by 3.02 times and 3.27 times, respectively, compared with the conventional neutron source design.
The distribution characteristics of the neutron field in cement was simulated using the MCNP code to comply with the requirements of an online Prompt Gamma Neutron Activation Analysis system.Simulation results showed that the neutron relative flux proportion reduced with increasing cement thickness.When the cement thickness remains unchanged,the reduced proportion of thermal neutrons increases to a small extent,but the epithermal, intermediate,and fast neutrons will decrease according to the geometric progression.H element in the cement mainly affects the reduction of fast neutrons and other single-substance elements,e.g.,O,Ca,56Fe,Si,and Al.It also slows down the reduction of the fast neutrons via inelastic scattering.O contributes more than other elements in the reduction of fast neutrons.Changing the H content affects the thermal,epithermal,intermediate,and fast neutrons, while changing the Ca,Fe,and Si contents only influences the thermal,epithermal,and intermediate neutrons;hence, there is little effect on the reduction of fast neutrons.
YANG JianboYANG YigangLI YuanjingTUO XianguoLI ZheLIU MingzheCHENG YiMU KeliangWANG Lei