To meet the needs of signal alignment between the transmitter and receiver in a quantum key distribution(QKD) system, we put forward a TDC-GPX-based synchronization scheme, which is based on high-precision time measurement. We send a low-frequency repeat optical pulse synchronized with associated quantum signals on the receiver's side by using a time-to-digital converter(TDC)module, the time intervals between quantum signals, and synchronization signals measured and converted to corresponding temporal orders to complete the synchronization.We state the principle of the synchronization scheme in detail and then verify it in an actual QKD test bed. The test results show that our TDC-GPX-based synchronization can obtain a time resolution better than 100 ps, and the proposed scheme shows full feasibility for an actual QKD system.
A conventional multi-channel pulse amplitude analyzer acquires single energy spectrum,but provides no information on its tendency with time.To address the limitation,we propose a scheme of time-sharing multichannel pulse amplitude analyzer(TSMCA).A dual-port random access memory is divided into two storage spaces,one for current energy spectrum data acquisition and another for previous energy spectrum data storage.The two tasks can be performed simultaneously,and the time-related variation tendency of energy spectrum can be obtained.A prototype system of TSMCA is designed.It performs nicely,with maximum channel number of 4096 in capacity of 2^(32)/Ch,minimal time-sharing slice of 25 ms,the differential nonlinearity of <1.5%,and the integral nonlinearity of <0.3%.