The films of two x-shape oligo(thiophene)s, 3, 4-dibithienyl-2, 5-dithienylthiophene (7T) and 2, 5-dibithienyl-3, 4- ditrithienylthiophene (11T), which are prepared by vacuum evaporation, have been investigated as novel electron donor layers in two-layer photovoltaic cells. UV-Vis absorptions show red-shifted and broadened absorptions of the vacuumevaporated films as compared with those of the corresponding solutions and spin-coating films, which is beneficial for photovoltaic properties. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) measurements show that the vacuum-evaporated films are almost amorphous. Two-layer photovoltaic cells have been realized by the thermal evaporation of 7T and llT as donors and N, N′-bis(1-ethylpropyl)-3, 4:9,10-perylene bis(tetracarboxyl diimide) (EP- PTC) as an acceptor. An energy conversion efficiency (ECE) of 0.18% of the cell based on 7T with an irradiation of white light at 100 mw/cm^2 has been demonstrated by the measurements of current (I)- voltage (V) curves of the cells to be higher than the ECE of the reference system based on donor dihexylterthienyl (H3T) that is linear and without α, β linkage.
White organic light-emitting diodes with a blue emitting material fluorene-centred ethylene-liked carbazole oligomer (Cz6F) doped into polyvinyl carbazole (PVK) as the single light-emitting layer are reported. The optical properties of Cz6F, PVK, and PVK:Cz6F blends are studied. Single and double layer devices are fabri- cated by using PVK: Cz6F blends, and the device with the configuration of indium tin oxide (ITO)/PVK:Cz6F/ tris(8-hydroxyquinolinate)aluminium (Alq3)/LiF/A1 exhibits white light emission with Commission Internationale de l'Eclairage chromaticity coordinates of (0.30, 0.33) and a brightness of 402 cd/m^2. The investigation reveals that the white light is composed of a blue-green emission originating from the excimer of Cz6F molecules and a red emission from an electroplex from the PVK:Cz6F blend films.