Photoluminescence (PL) measurement is used to study the point defect distribution in a GaN terahertz Gunn diode, which is able to the degrade high-field transport characteristic during further device operation. PL, secondary ion mass spectroscopy (SIMS), transmission electron microscope (TEM), and capacitance-voltage (C-V) measurements are used to discuss the origin of point defects responsible for the yellow luminescence in structures. The point defect densities of about 1011 cm-2 in structures are extracted by analysis of C-V characterization. After thermal annealing treatment, diminishments of point defect densities in structures are efficiently demonstrated by PL and C-V results.
We report on an improvement in the crystal quality of GaN film with an Ino.17Alo.83N interlayer grown by pulsed metal-organic chemical vapor deposition, which is in-plane lattice-matched to GaN films. The indium composition of about 17% and the reductions of both screw and edge threading dislocations (TDs) in GaN film with the InA1N interlayer are estimated by high resolution X-ray diffraction. Transmission electron microscopy (TEM) measurements are employed to understand the mechanism of reduction in TD density. Raman and photoluminescence measurements indicate that the InA1N interlayer can improve the crystal quality of GaN film, and verify that there is no additional residual stress induced into the GaN film with InA1N interlayer. Atomic force microscopy measurement shows that the InA1N interlayer brings in a smooth surface morphology of GaN film. All the results show that the insertion of the InA1N interlayer is a convenient method to achieve excellent crystal quality in GaN epitaxy.