The optical emission spectra (atomic hydrogen (Hα, Hβ, Hγ), atomic carbon C (2p3s → 2p^2: A = 165.7 nm) and radical CH (A^2△ →X^2П:λ = 420 - 440 nm)) in the gas phase process of the diamond film growth from a gas mixture of CH4 and H2 by the technology of electron-assisted chemical vapor deposition (EACVD) have been investigated by using Monte Carlo simulation. The results show that the growth rate may be enhanced by the substrate bias due to the increase of atomic hydrogen concentration and the mean temperature of electrons. And a method of determining the mean temperature of electrons in the plasma in-situ is given. The strong dependence on substrate temperature of the quality of diamond film mainly attributes to the change of zas ohase orocess near the substrate surface.
Discharge characteristics have been investigated in different gases under different pressures using a dielectric barrier surface discharge device. Electrical measurements and optical emission spectroscopy are used to study the discharge, and the results obtained show that the discharges in atmospheric pressure helium and in low-pressure air are diffuse, while that in high-pressure air is filamentary. With decreasing pressure, the discharge in air can transit from filamentary to diffuse one. The results also indicate that corona discharge around the stripe electrode is important for the diffuse discharge. The spectral intensity of N+ (391.4nm) relative to N2 (337.1 nm) is measured during the transition from diffuse to filamentary discharge. It is shown that relative spectral intensity increases during the discharge transition. This phenomenon implies that the averaged electron energy in diffuse discharge is higher than that in the filamentary discharge.
Spiral waves have been controlled by generating target waves with a localized inhomogeneity in the oscillatory medium. The competition between the spiral waves and target waves is discussed. The effect of the localized inhomogeneity size has also been studied.