EQrot nonconforming finite element approximation to a class of nonlinear dual phase lagging heat conduction equations is discussed for semi-discrete and fully-discrete schemes. By use of a special property, that is, the consistency error of this element is of order O(h2) one order higher than its interpolation error O(h), the superclose results of order O(h2) in broken Hi-norm are obtained. At the same time, the global superconvergence in broken Hi-norm is deduced by interpolation postprocessing technique. Moreover, the extrapolation result with order O(h4) is derived by constructing a new interpolation postprocessing operator and extrapolation scheme based on the known asymptotic expansion formulas of EQrot element. Finally, optimal error estimate is gained for a proposed fully-discrete scheme by different approaches from the previous literature.
The block-by-block method,proposed by Linz for a kind of Volterra integral equations with nonsingular kernels,and extended by Kumar and Agrawal to a class of initial value problems of fractional differential equations(FDEs)with Caputo derivatives,is an efficient and stable scheme.We analytically prove and numerically verify that this method is convergent with order at least 3 for any fractional order indexα>0.