This paper deals with the discontinuous Galerkin (DG) methods for delay differential equations. By an orthogonal analysis in each element, the superconvergence results of the methods are derived at nodal points and eigenpoints. Numerical experiments will be carried our to verify the effectiveness and the theoretical results of the proposed methods.
This article deals with a class of numerical methods for retarded differential algebraic systems with time-variable delay. The methods can be viewed as a combination of Runge-Kutta methods and Lagrange interpolation. A new convergence concept, called DA-convergence, is introduced. The DA-convergence result for the methods is derived. At the end, a numerical example is given to verify the computational effectiveness and the theoretical result.
A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.