In this article, the performance of the Visible and Shortwave infrared Drought Index(VSDI), a drought index recently developed and validated in Oklahoma, United States, is further explored and validated in China. The in-situ measured soil moisture from 585 weather stations across China are used as ground-truth data, and five commonly used drought indices are compared with VSDI for surface drought monitoring. The results reveal that VSDI is robust and reliable in the estimation of surface dryness—it has the highest correlation with soil moisture among the six indices when computed using both the original and cloud removed data. All six indices show the highest correlation with soil moisture at the 10 cm layer and the averaged 10–50 cm layer. The spatiotemporal patterns of surface moisture indicated by the MODIS-based VSDI are further compared with the precipitation-based drought maps and the Global Land Data Assimilation System(GLDAS) simulated surface soil moisture maps over five provinces located in the Middle-Lower Yangtze Plain of China. The results indicate that despite the difference between the spatial and temporal resolutions of the three products, the VSDI maps still show good agreement with the other two drought products through the rapidly alternating drought and flood events in 2011 in this region. Therefore, VSDI can be used as an effective surface wetness indicator at both the provincial and the national scales in China.
农田干旱具有范围广且对农业生产影响巨大的特点,对农田干旱的遥感实时动态监测是目前公认的难题。利用MODIS的地表温度(LST)产品和叶面积指数(LAI)产品,构建LST-LAI光谱特征空间,提出温度—叶面积干旱指数(temperature LAI drought index,TLDI)监测农田水分含量,并利用宁夏实测的0~10cm平均土壤含水量验证该指数的精度,结果表明:它们之间具有良好的相关性,R2的变化范围为0.43~0.86。与TVDI相比,TLDI弥补了作物封垄后TVDI因归一化植被指数(NDVI)饱和对农田水分监测精度降低的缺陷。此外,利用MODIS数据产品LST和LAI进行农田干旱监测,避免了使用MODIS原始数据的繁杂处理过程,初步为MODIS数据产品在农田干旱监测业务化运行探索出一条技术流程。