Two kinds of convergent sequences on the real vector space m of all bounded sequences in a real normed space X were discussed in this paper, and we prove that they are equivalent, which improved the results of [1].
In this paper we introduce the isometric extension problem of isometric mappings between two unit spheres. Some important results of the related problems are outlined and the recent progress is mentioned.
Ding GuangGui School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
This is such a article to consider an "into" isometric mapping between two unit spheres of two infinite dimensional spaces of different types. In this article, we find a useful condition (using the Krein-Milman property) under which an into-isometric mapping from the unit sphere of e(Γ) to the unit sphere of a normed space E can be linearly isometric extended.
Let X and Y be real Banach spaces.Suppose that the subset sm[S1(X)] of the smooth points of the unit sphere [S1(X)] is dense in S1(X).If T0 is a surjective 1-Lipschitz mapping between two unit spheres,then,under some condition,T0 can be extended to a linear isometry on the whole space.
In this paper, we show that if Vo is a 1-Lipschitz mapping between unit spheres of two ALP-spaces with p 〉 2 and -Vo(S1(LP)) C Vo(S1(LP)), then V0 can be extended to a linear isometry defined on the whole space. If 1 〈 p 〈 2 and Vo is an "anti-l-Lipschitz" mapping, then Vo can also be linearly and isometrically extended.