国家自然科学基金(61202030)
- 作品数:2 被引量:38H指数:2
- 相关作者:陈翔王赞郁雪蒋华荣更多>>
- 相关机构:天津大学厦门航空有限公司南通大学更多>>
- 发文基金:国家自然科学基金更多>>
- 相关领域:自动化与计算机技术更多>>
- 一种基于遗传算法的多缺陷定位方法被引量:30
- 2016年
- 基于程序频谱的缺陷定位方法可以有效地辅助开发人员定位软件内部缺陷,但大部分已有自动化方法在解决多缺陷定位问题时表现不佳,部分效果尚可的方法因复杂度较高或需要开发人员较多交互而仍需进一步改善.为改善上述问题,提出一种基于遗传算法的多缺陷定位方法 GAMFal,具体来说:首先基于搜索的软件工程思想对多缺陷定位问题进行建模,构建了候选缺陷分布的染色体编码方式,并基于扩展的Ochiai系数计算个体的适应度值;随后使用遗传算法在解空间中搜索具有最高适应度值的候选缺陷分布,在终止条件被满足后返回最优解种群;最后根据这个种群对程序实体进行排序.这样开发人员可以依次对程序实体进行检查并最终确定多个缺陷的具体位置.实证研究以Siemens套件中的7个程序和Linux的3个程序(gzip、grep和sed)作为评测对象,并扩展传统的定位方法评测标准EXAM至EXAMF和EXAML,通过与其他经典的缺陷定位方法(Tarantula、Improved Tarantula及Ochiai)进行对比,并通过Friedman检测和最小显著性差异测试可得,提出的GAMFal方法在整体定位效率方面优于传统方法,且需要更少的人工交互.除此之外,GAMFal的执行时间也在可接受的范围之内.
- 王赞樊向宇邹雨果陈翔
- 关键词:遗传算法
- 应用遗传算法优化子空间的SVM分类算法被引量:8
- 2013年
- 提出了一种应用遗传算法优化子空间的SVM分类算法GS-SVM。该算法首先改进样本选择策略,采用基于置信度和凸包的样本选择方法,考虑类间距离和样本分布等因素,选择典型代表样本作为SVM的新训练集;然后采用矩阵式混合编码方式,利用遗传算法一并优化代表样本的特征子空间和SVM分类参数,并根据特征优化后的代表样本,构建SVM分类模型。在UCI的11个数据集上进行的仿真实验结果表明,该算法在大部分数据集上均可获得较小的样本规模和特征维数,以及较高的分类精度。
- 蒋华荣郁雪
- 关键词:子空间分类遗传算法支持向量机凸包