The biomimetic locust robot hopping vehicle has promising applications in planet exploration and reconnaissance. This paper explores the bionic dynamics model of locust jumping by using high-speed video and force analysis. This paper applies hybrid rigid-flexible mechanisms to bionic locust hopping and studies its dynamics with emphasis laid on the relationship between force and jumping performance. The hybrid rigid-flexible model is introduced in the analysis of locust mechanism to address the principles of dynamics that govern locust joints and mechanisms during energy storage and take-off. The dynamic response of the biomimetic mechanism is studied by considering the flexi- bility according to the locust jumping dynamics mechanism. A multi-rigid-body dynamics model of locust jumping is established and analyzed based on Lagrange method; elastic knee and tarsus mechanisms that were proposed in previous works are analyzed alongside the original bionic joint configurations and their machinery principles. This work offers primary theories for take-off dynamics and establishes a theoretical basis for future studies and engineering applications.
The landing buffer is an important problem in the research on bionic locust jumping robots, and the different modes of landing and buffering can affect the dynamic performance of the buffering process significantly. Based on an experimental observation, the different modes of landing and buffering are determined, which include the different numbers of landing legs and different motion modes of legs in the buffering process. Then a bionic locust mechanism is established, and the springs are used to replace the leg muscles to achieve a buffering effect. To reveal the dynamic performance in the buffering process of the bionic locust mechanism, a dynamic model is established with different modes of landing and buffering. In particular, to analyze the buffering process conveniently, an equivalent vibration dynamic model of the bionic locust mechanism is proposed.Given the support forces of the ground to the leg links, which can be obtained from the dynamic model, the spring forces of the legs and the impact resistance of each leg are the important parameters affecting buffering performance, and evaluation principles for buffering performance are proposed according to the aforementioned parameters. Based on the dynamic model and these evaluation principles, the buffering performances are analyzed and compared in different modes of landing and buffering on a horizontal plane and an inclined plane. The results show that the mechanism with the ends of the legs sliding can obtain a better dynamic performance. This study offers primary theories for buffering dynamics and an evaluation of landing buffer performance,and it establishes a theoretical basis for studies and engineering applications.
Good landing buffering performance can reduce impact and vibration for the bionic locust jumping robot; thus, a landing buffer is important in evaluating the motion performance of the bionic locust robot. In particular, the legs of the robot are the main structures that realize the buffer; thus, its structure affects buffering performance. Three typical leg structure models are established based on the physiological analysis of the locust leg and research status, namely, bionic leg, multi-constraint leg, and arc legs. Kinematic and force analyses are conducted for these types of legs. Particularly, flexible deformation of leg link is considered in the analysis to describe the movement process accurately. In order to compare the buffering performance of these types of legs quantitatively, the performance indices with maximum buffering distance, the energy absorption capability, and the mechanical property are presented. Based on the performance indices, the structure parameters are analyzed and optimized. The buffering performance of the three leg structures is compared with the comprehensive performance of different structures in each best state. This study offers a quantitative analysis and comparison for different legs of bionic locust jumping robot based on landing buffering performance. Furthermore, a theoretical basis for future research and engineering applications is established.