您的位置: 专家智库 > 资助详情>国家自然科学基金(60973059)

国家自然科学基金(60973059)

作品数:1 被引量:0H指数:0
发文基金:国家教育部博士点基金国家自然科学基金更多>>
相关领域:自动化与计算机技术更多>>

文献类型

  • 1篇期刊文章
  • 1篇会议论文

领域

  • 2篇自动化与计算...

主题

  • 1篇单细胞
  • 1篇智能交通
  • 1篇视频
  • 1篇视频跟踪
  • 1篇视频监控
  • 1篇细胞
  • 1篇均值
  • 1篇计数
  • 1篇计数方法
  • 1篇感受野
  • 1篇SHAPES
  • 1篇V1
  • 1篇MEAN_S...

机构

  • 1篇北京理工大学

作者

  • 1篇刘峡壁

传媒

  • 1篇Scienc...

年份

  • 1篇2014
  • 1篇2011
1 条 记 录,以下是 1-2
排序方式:
融合视频与激光信息的双向人流计数方法
提出了通过融合视频与激光信息以实现双向人流计数的方法。首先利用激光处理手段对通过指定位置的人数进行统计,然后利用视频跟踪手段确定人通过指定位置后的离开方向,最后根据视频信息与激光信息的匹配关系,计算在两个不同方向上的离开...
钟新玉刘峡壁魏雪曹月
关键词:视频跟踪智能交通视频监控
文献传递
Hebbian-based mean shift for learning the diverse shapes of V1 simple cell receptive fields
2014年
The L0-norm constraint in sparse coding has the advantage of producing the same diversity of receptive field shapes as physiology data,but is difficult for analysis.It remains a challenging issue to understand how the diverse shapes of V1 simple cell receptive fields emerge in visual cortex.This paper presents a biologically plausible learning algorithm,named Hebbian-based mean shift,for this problem.The L0-norm constraint optimizes the number of basis functions rather than their coefficients.We report that the optimization procedure is essentially a 0–1 programming of the selection of basis functions.By assuming that the basis functions are independently selected from a basis set,we find the spatial distribution of input samples containing a special basis function has a star shape and peaks at this basis function.Thus,learning the basis functions for sparse coding with the L0-norm can be interpreted as mode detection where the basis functions are the modes of the kernel density estimate.We employ mean shift to detect modes and prove that the updating rule for the mean shift is Hebbian.The simulation results demonstrate the robustness of the proposed algorithm in producing both Gabor-like and blob-like basis functions.
Jiqian LiuYunde Jia
关键词:感受野单细胞均值
共1页<1>
聚类工具0