Slow light supported by electromagnetically induced transparency effect in dispersive medium is extremely susceptible with respect to Doppler detuning. In this paper, the Doppler effect induced by rotating dispersive medium was considered and the effect of the velocity of rotating dispersive medium on the group velocity was studied. Based on a dispersive slow-light medium, a high sensitive optical rotation sensor for measuring absolute rotation is proposed and analysed. The sensitivity of the rotation sensor is the group delay between the counterpropagationed wave packets in the device, and scales directly with square of the group index which can reach 102-10s orders of magnitude by selecting a proper dispersive medium.
This paper proposes a ring-out-ring structure of coupled optical resonators to yield coupled-resonator-induced transparency (CRIT). Considering the insertion loss of the coupler, it theoretically deduces the transmission and the effective phase shift. The influences of the insertion loss of the coupler on the transmittance, the effective phase shift, the group index and the CRIT linewidth are fully studied. We find that the increase in multiple m can effectively enhance the normal dispersion and the group index of the proposed structure. Moreover, the specific expression of the group index at resonance is theoretically deduced and discussed for the proposed structure with two rings. The result shows that the multiple m between the lengths of ring 1 and ring 2 can enhance the group index to m times that of the structure with two equal-sized rings at resonance. The control of slow light in the proposed structure is important for applications of highly sensitivity gyroscopes, optical delay lines and optical buffers, etc.