Objective:To explore the expression of nuclear factor-kappa B (NF-kB) in Schwann cells (SCs) and its effect on motor neuron apoptosis in spinal cord following sciatic nerves injury in adult rats. Methods: Thirty-six adult Sprague-Dawley (SD) rats were divided randomly into normal control group (n=6), and sciatic nerves crushing group (n= 30), and the later was further equally randomized into 5 subgroups: 1, 3, 7, 14, and 21 d post-injury groups. The expression of NF-kB of normal and injured nerves were examined by immunohistochemistry staining, and the apoptosis of motor neurons in spinal cord of lumbar 4 to lumbar 6 (L4-L6) was investigated by terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling (TUNEL) assay. Both were qua.ntitated by image analysis. Results: In crushing group, except 21 d post-injury group, the expression of NF-kB was markedly higher than that in the normal control group (P〈0.05, P〈0. 01). At 1 d after sciatic nerves crushing, the expression of NF-kB was obviously up-regulated, reached peak at 3 d, and recovered at 21 d. The same trend was observed in the time-course on motor neuron apoptosis after sciatic nerves injury. Correlation analyses revealed that motor neuron apoptosis was significantly and positively correlated with the expression of NF-kB following sciatic nerves injury (r= 0. 976 0, P〈0. 01). Conclusion: After injury of sciatic nerves, the presence and up-regulation of NF-kB in SCs may be involved in motor neuron apoptosis in L4-L6 spinal cord.
Objective: To clone, express, and identify the extracellular domain gene of human p75 neurotrophin receptor with IgG-Fe (hp75NTR-Fc) in prokaryotic expression system, and investigate the effect of the recombinant protein on dorsal root ganglia (DRG) neuron neurites. Methods: The hp75NTR-Fc coding sequence was amplified from pcDNA-hp75NTR-Fc by polymerase chain reaction (PCR) and subcloned into vector pET30a (+), in which hp75NTR-Fc expression was controlled under the T7 promoter. The recombinant vectors were amplified in E. coli DH5α and identified by PCR, enzyme digestion and sequencing, and then transformed into E. coli BL21 (DE3). The expression product was analyzed with SDS-PAGE and Western blot. Then after the recombinant protein purified with Protein A affinity chromatograph, and renaturated with dialysis, respectively, the effect of the recombinant protein on DRG neuron neuritis was further investigated. Results: The results of PCR, enzyme digestion, and sequencing demonstrated the success of inserting the hp75NTR-Fc fragment into vector pET30a (+). SDS-PAGE and Western blot showed a positive protein band with molecular weight about 50 kD in the expression product, which is accordant with the interest protein, and this band could be specifically recognized by rabbit anti-NGFRp75 antibody. The purified infusion protein following dialysis could promote neurite outgrowth of DRG neurons cultured with myelin-associated glycoprotein (MAG). Conclusion: The hp75NTR-Fc coding sequence was subcloned into the expression vector pET30a (+) correctly and expressed successfully in the prokaryotie expression system. The infusion protein could promote neurite outgrowth of DRG neurons cultured with MAG.