A straight-blade mechanical stirrer was designed to stir A356-3.5vol%SiCp liquid in a cylindrical crucible with the capability of systematically investigating the influence of rotating speed of stirrer on the distribution of SiC particles in A356 liquid. The experimental results show that the vertical distribution of SiC particles in A356 liquid can be uniform when the rotating speed of stirrer is 200 rpm, but the radial distribution of SiC particles in A356 liquid is always nonhomogeneous regardless of the rotating speed of stirrer. The radial centdfugalization ratio of SiC particles in A356 liquid between the center and the periphery of crucible increases with the rotating speed of stirrer. The results were explained in the light of SiC particles motion subject to a combination of stirring and centrifugal effect.
In order to clarify the dispersion of SiC particles in straight-blade mechanical stirring of A1-SiCp liquid, the dispersion of SiC particles in A356-3.5% SiCp (volume fraction) liquid in a cylindrical crucible was studied. The relationship between rotating speed of stirrer and radial relative deviation of SiCp content in A356 liquid between the center and the periphery of crucible was established in the conditions of 35° for the gradient angle a of blade and 10 mm/s for the speed of moving up and down of stirrer. The results show that the radial relative deviation of SiCp content increases gradually with increasing the rotating speed of stirrer. When the rotating speed of stirrer is 200 r/min, the vertical dispersion of SiC particles in A356 liquid is even, but the radial relative deviation of SiCp content is 0.24. Consequently, the northomogeneous dispersion of SiC particles in A356 liquid is mainly resulted from the nonhomogeneous radial dispersion of SiC particles.