The flow patterns of the gas-liquid two-phase flow in a Moving-Bed Biofilm Reactor (MBBR) have a critical effect upon the mass transfer by the convection. Bubble plumes promote unsteadily fluctuating two-phase flows during the aeration. This article studies the unsteady structure of bubble plumes through experiments. The time-serial bubble plume images in various cases of the tank are analyzed. The Recursive Cross Correlation-Particle Image Velocimetry (RCC-PIV) is used to calculate the velocities in those cases, and then the time-serial vortex, the total turbulence intensity, the time-serial streamline are obtained. It is shown that the aspect ratio and the void fraction are the dominant factors influencing the unsteady structure of bubble plumes. When the aspect ratio is unity and the void fraction is high, the bubble plumes see a symmetrical vortex structure with a long residence time, which is beneficial for optimizing the aeration system and enhancing the applied range of bubble plumes.
The movement of the bubble plume plays an important role in the operation of a moving bed biofilm reactor (MBBR), and it directly affects the contact and the mixture of the gas-liquid-solid phases in the aeration tank and also the oxygen transfer from the gas phase to the liquid phase. In this study, the velocity field is determined by a 4-frame PTV as well as the time-averaged and timedependent velocity distributions. The velocity distribution of the bubble plume is analyzed to evaluate the operating efficiency of the MBBR. The results show that the aeration rate is one of the main factors that sway the velocity distribution of the bubble plumes and affect the operating efficiency of the reactor.