The S-type test is simulated based on a ship manoeuvring mathematical model of 4 degrees of freedom(4-DOF);simultaneously,sensitivity analysis of the hydrodynamic coefficients in the mathematical model is implemented by using an indirect method.The mathematical model is simplified by omitting the coefficients of smaller sensitivity according to the results of sensitivity analysis.The 10°/10° zigzag test and 35° turning circle manoeuvre are simulated with the original and the simplified mathematical models.The comparison of the simulation results shows the effectiveness of the sensitivity analysis and the validity of the simplified model.
Based on support vector machines, three modeling methods, i.e., white-box modeling, grey-box modeling and black-box modeling of ship manoeuvring motion in 4 degrees of freedom are investigated. With the whole-ship mathematical model for ship manoeuvring motion, in which the hydrodynamic coefficients are obtained from roll planar motion mechanism test, some zigzag tests and turning circle manoeuvres are simulated. In the white-box modeling and grey-box modeling, the training data taken every 5 s from the simulated 20°/20° zigzag test are used, while in the black-box modeling, the training data taken every 5 s from the simulated 15°/15°, 20°/20° zigzag tests and 15°, 25° turning manoeuvres are used; and the trained support vector machines are used to predict the whole 20°/20° zigzag test. Comparisons between the simulated and predicted 20°/20° zigzag tests show good predictive ability of the proposed methods. Besides, all mathematical models obtained by the proposed modeling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the proposed modeling methods are analyzed and compared with each other in aspects of application conditions, prediction accuracy and computation speed. The appropriate modeling method can be chosen according to the intended use of the mathematical models and the available data needed for system identification.
Based on the ε - support vector regression, three modelling methods for the ship manoeuvring motion, i.e., the white-box modelling, the grey-box modelling and the black-box modelling, are investigated. The 10°/10°, 20°/20° zigzag tests and the 35° turning circle manoeuvre are simulated. Part of the simulation data for the 20°/20° zigzag test are used to train the support vectors, and the trained support vector machine is used to predict the whole 20° / 20° zigzag test. Comparison between the simula- ted and predicted 20° / 20° zigzag test shows a good predictive ability of the three modelling methods. Then all mathematical models obtained by the modelling methods are used to predict the 10°/10° zigzag test and 35° turning circle manoeuvre, and the predicted results are compared with those of simulation tests to demonstrate the good generalization performance of the mathematical models. Finally, the modelling methods are analyzed and compared with each other in terms of the application conditions, the prediction accuracy and the computation speed. An appropriate modelling method can be chosen according to the intended use of the mathematical models and the available data for the system identification.