Short-range order domains of face central cubic Zr2Ni (F-Zr2Ni) and tetragonal Zr2Ni (T-Zr2Ni) type structure with a size about 1–3 nanometers were observed in bulk amorphous Zr52.5Cu17.9Ni14.6Al10Ti5 alloy by using HREM and nano-beam electron diffraction technique. A new thermodynamic model was formulated based on the concept of chemical short-range order (SCRO). The molar fractions of CSRO and thermodynamic properties in Ni?Zr, Cu?Zr, Al?Zr, Al?Ni, Zr?Ni?Al and Zr?Ni?Cu were calculated. According to the principle of maximum ΔG CSRO, the optimum glass forming ability (GFA) compositions were predicted in binary and ternary alloys. These results were proved to be valid by the experimental data of crystallizing activation energy, ΔT x and XRD patterns. The TTT curves of Zr?Ni?Cu alloys calculated based on CSRO model shows that the lowest critical cooling rate GFA is in the order of 100 K/s, which is close to the practical cooling rate for the preparation of Zr-based BMG alloys.
The influence of pre-annealing on thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy was reported by employing the differential scanning calorimetry (DSC)and high-resolution transmission electron microscopy (HRTEM) techniques. It has been observed thatthe supercooled liquid region decreases with increasing the annealing time under isothermalconditions, indicating that the thermal stability of the amorphous Zr_(70)Cu_(20)Ni_(10) alloydecreases gradually. HRTEM observations reveal that there exist some ordered atomic clusters in theamorphous matrix at the relaxation stage. These ordered atomic clusters can be regarded asprecursors for the precipitation of the crystalline phases in the subsequent crystal-lizationprocess. The reasons resulting in the decrease in thermal stability of the amorphousZr_(70)Cu_(20)Ni_(10) alloy with annealing time are discussed through the Gaussian decomposition forthe radial distribution function of the amorphous Zr_(70)Cu_(20)Ni_(10) alloy.
The effects of Ta on the characteristics of the Zr-base BMG (bulk metallic glass) were investigated. Zr55Al10Ni5Cu30-xTax (x=1, 2,4) bulk metallic glasses (BMGs) with 3.5 mm diameter and 70 mm length were successfully prepared by using combined jet and copper mold casting. A small amount of Ta addition does not change the glass transition temperature, crystallization temperature, and supercooled liquid region obviously, but Ta promotes composition separation and two-stage crystallization. The stable crystalline phases include Zr2Ni, CuZr2, Al2Zr3 intermetallic compounds and Ta-rich solid solution after annealing the Zr-Al-Ni-Cu-Ta alloys at 753 K. Zr55Al10Ni5Cu30-xTax (x=1,2,4) bulk glassy alloys exhibit a better compressive strength. The stress-strain curve shows a zigzag feature, and the fracture surface shows intersecting of shear bands. It may correlate with the inhomogeneous feature of amorphous structure.
A novel Ti/Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 composite was successfully prepared by infiltrating the melt into sintered Ti preform. It shows that the introduction of Ti particles into the composite results in an increase in elastic strain to 3% and an enhancement of the strength up to 2.1 GPa. High specific strength has been obtained because of the decrease in density of the composite. It is suggested that an improvement in the mechanical properties of the composite may be attributed to the generation of multiple shear bands and some deformation in the Ti particles.
Cuimei Zhang Xidong Hui Meiling Wang Guoliang Chen