您的位置: 专家智库 > >

国家自然科学基金(11272258)

作品数:5 被引量:10H指数:2
相关作者:孙中奎徐伟杨晓丽张丽更多>>
相关机构:西北工业大学陕西师范大学更多>>
发文基金:国家自然科学基金西北工业大学基础研究基金中央高校基本科研业务费专项资金更多>>
相关领域:理学电子电信更多>>

文献类型

  • 5篇期刊文章
  • 1篇会议论文

领域

  • 6篇理学
  • 1篇电子电信

主题

  • 2篇网络
  • 2篇EXTINC...
  • 1篇噪声
  • 1篇噪声环境
  • 1篇时滞
  • 1篇双稳
  • 1篇随机共振
  • 1篇随机噪声
  • 1篇网络系统
  • 1篇复杂网
  • 1篇复杂网络
  • 1篇SCM
  • 1篇STATIS...
  • 1篇STOCHA...
  • 1篇STOCHA...
  • 1篇SWITCH...
  • 1篇SWITCH...
  • 1篇TUMOR
  • 1篇DELAY
  • 1篇IMMUNE

机构

  • 2篇西北工业大学
  • 1篇陕西师范大学

作者

  • 2篇孙中奎
  • 1篇张丽
  • 1篇杨晓丽
  • 1篇徐伟

传媒

  • 2篇物理学报
  • 2篇Chines...
  • 1篇Scienc...
  • 1篇第四届全国神...

年份

  • 1篇2018
  • 1篇2016
  • 1篇2015
  • 2篇2014
  • 1篇2013
5 条 记 录,以下是 1-6
排序方式:
Taming complexity in nonlinear dynamical systems by recycled signal被引量:1
2016年
In this paper, the impacts of the recycled signal on the dynamic complexity have been studied theoretically and numerically xn a prototypical nonlinear dynamical system. The Melnikov theory is employed to determine the critical boundary, and the sta- tistical complexity measure (SCM) is defined and calculated to quantify the dynamic complexity. It has been found that one can switch the dynamics from the periodic motion to a chaotic one or suppress the chaotic behavior to a periodic one, merely via adjusting the time delay or the amplitude of the recycled signal, therefore, providing a candidate to tame the dynamic com- plexity in nonlinear dynamical systems.
SUN ZhongKuiYANG XiaoLiXU Wei
关键词:SCM
非对称双稳耦合网络系统的尺度随机共振研究被引量:5
2014年
研究了不同周期信号调制下非对称双稳耦合网络系统的尺度随机共振问题.针对该网络系统,首先运用高斯近似和役使原理对其进行了降维,推导了其简化模型.在绝热近似条件下,利用Fokker-Planck方程分别得到了余弦信号和矩形信号调制下信噪比的解析表达式.在此基础上,研究了系统的尺度随机共振行为,并讨论了非对称性、噪声强度、周期信号的振幅和耦合系数对系统尺度随机共振的影响.结果表明,两种情形下信噪比均是系统尺度的非单调函数,说明在此网络系统中产生了共振现象.
孙中奎鲁捧菊徐伟
Effects of Lvy noise and immune delay on the extinction behavior in a tumor growth model被引量:3
2014年
The combined effects of Ltvy noise and immune delay on the extinction behavior in a tumor growth model are explored, The extinction probability of tumor with certain density is measured by exit probability. The expression of the exit probability is obtained using the Taylor expansion and the infinitesimal generator theory. Based on numerical calculations, it is found that the immune delay facilitates tumor extinction when the stability index α〈 1, but inhibits tumor extinction when the stability index α 〉 1. Moreover, larger stability index and smaller noise intensity are in favor of the extinction for tumor with low density. While for tumor with high density, the stability index and the noise intensity should be reduced to promote tumor extinction.
郝孟丽徐伟谷旭东戚鲁媛
Quantifying the Stochastic resonance in a noisy bistable fractional-order system via statistical complexity measures
In this paper, statistical complexity measures are employed to quantify the stochastic resonance in a bistable...
Puni Dang孙中奎
文献传递
Effects of two types of noise and switching on the asymptotic dynamics of an epidemic model
2015年
This paper mainly investigates dynamics behavior of HIV (human immunodeficiency virus) infectious disease model with switching parameters, and combined bounded noise and Gaussian white noise. This model is different from existing HIV models. Based on stochastic Ito lemma and Razumikhin-type approach, some threshold conditions are established to guarantee the disease eradication or persistence. Results show that the smaller amplitude of bounded noise and R0 〈 1 can cause the disease to die out; the disease becomes persistent if R0 〉 1. Moreover, it is found that larger noise intensity suppresses the prevalence of the disease even if R0 〉 1. Some numerical examples are given to verify the obtained results.
徐伟王喜英刘新芝
关键词:EXTINCTIONPERMANENCE
噪声环境下时滞耦合网络的广义投影滞后同步被引量:2
2013年
时滞和噪声在复杂网络中普遍存在,而含有耦合时滞和噪声摄动的耦合网络同步的研究工作却极其稀少.本文针对噪声环境下具有不同节点动力学、不同拓扑结构及不同节点数目的耦合时滞网络,提出了两个网络之间的广义投影滞后同步.首先,构建了更加贴近现实的驱动-响应网络同步的理论框架;其次,基于随机时滞微分方程LaSalle不变性原理,严格证明了在合理的控制器作用下,驱动网络和响应网络在几乎必然渐近稳定性意义下能够取得广义投影滞后同步;最后,借助于计算机仿真,通过具体的网络模型验证了理论推理的有效性.数值模拟结果表明,驱动网络与响应网络不但能够达到广义投影滞后同步,而且同步效果不依赖于耦合时滞和比例因子的选取,同时也揭示了更新增益和耦合时滞对同步收敛速度的显著性影响.
张丽杨晓丽孙中奎
关键词:复杂网络随机噪声时滞
共1页<1>
聚类工具0