By the variable transformation and generalized Hirota method, exact homoclinic and heteroclinic solutions for Davey-Stewartson II (DSII) equation are obtained. For perturbed DSII equation, the existence of a global attractor is proved. The persistence of homoclinic and heteroclinic flows is investigated, and the special homoclinic and heteroclinic structure in attractors is shown.
In this paper, the existence of the exponential attractor of Davey-Stewartson equation is considered and its estimation of fractal dimension is obtained in a Banach subspace Xp^α of L^p(Ω).