To improve the wettability of Al metal matrix composites(Al-MMCs) by common filler metals,Al-12Si-xTi(x=0.1,0.5,1,3.0;mass fraction,%) system active ternary filler metals were prepared.It was demonstrated that although the added Ti existed within Ti(Al1-xSix)3(0≤x≤0.15) phase,the shear strength and shear fracture surface of the developed Al-12Si-xTi brazes were quite similar to those of traditional Al-12Si braze due to the presence of similar microstructure of Al-Si eutectic microstructure with large volume fraction.So,small Ti addition(~1%) did not make the active brazes brittle and hard compared with the conventional Al-12Si braze.The measured melting range of each Al-12Si-xTi foil was very similar,i.e.,580-590 ℃,because the composition was close to that of eutectic.For wettability improvement,with increasing Ti content,the interfacial gap between the Al2O3 reinforcement and filler metal(R/M) could be eliminated,and the amount of the remainder of the active fillers on the composite substrate decreased after sessile drop test at 610 ℃ for 30 min.So,the wettability improvement became easy to observe repeatedly with increasing Ti content.Additionally,the amount and size of Ti(AlSi)3 phase were sensitive to the Ti content(before brazing) and Si content(after brazing).
To improve the wettability of common fiUer metals on Al metal matrix composites ( AI-MMCs ) , three kinds of active ternary filler metals, Al-Si-Ti, Zn-Al-Ti and Cu-Al-Ti systems, were prepared by the addition of Ti. Excessive melting temperature made the gravity segregation of Ti remarkable in ingot. The effect of Ti content on the melting point for AI-Si-Ti ternary system was not as sensitive as that for Al-Ti binary system. The Al-12Si-1Ti filler metal showed good ability to form brazing foil during rapid cooling, ductile fracture surface and similar shear strength to conventional Al-12Si filler metal. Moreover, the Al2 03 reinforcements on initial surface could be covered by the Al-12Si-1Ti filler metal without interfacial gaps after sessile drop test. For Zn-9.5Al-0. 5 Ti braze alloy, severe vaporization of Zn and severe segregation of Ti Occurred. During wettability test for traditional Al-12Si and Zn-9.5Al-0. 5Ti, although some Si or Zn could penetrate into the composite, interfacial gap still remained. The prepared Cu-19Al-1 Ti interlayer consisted of primary phase of Al4Cu9 and network Cu-Al-Ti ternary intermetaUic compound, showing poor ability to form foil and very brittle nature. These results demonstrated that Al-Si-Ti system should be promising for Al-MMCs.